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SUMMARY: A two-body system is being considered in a PN formalism involv-
ing higher powers of variables and mixed terms. The McGehee-type coordinate
transformations are used to blow up the collision singularity and to regularize the
equations of motion. The collision manifold is obtained as a 2D torus embedded
in the 4D phase space. A similar torus is obtained for the infinity manifold. The
fictitious flows on these tori are described. They provide information about near-
collisional orbits and about escape and near-escape orbits.

1. INTRODUCTION

There exists lots of quantitative studies about
the two-body problem in the PN and even PPN ap-
proximations (see e.g. Brumberg 1972). As to qual-
itative investigations, there were performed studies
on various models which describe the motion of a
test particle subjected to the action of a PN field-
generating source. Among such fields, we mention
those of Manev-type (Maneff 1925; Diacu et al. 1995;
Delgado et al. 1996) or Schwarzschild-type (Blaga
and Mioc 1992; Moeckel 1992; Stoica and Mioc
1997).

The goal of this paper is to start an analysis
that presents a twofold interest. On the one hand it
offers to the mathematicians a physically more sig-
nificant Hamiltonian for the study of the two-body
problem. On the other hand, it provides to the physi-
cists a very useful technique (familiar for the moment
only to celestial mechanicians).

We shall consider the motion of a test particle

in a spherical PN field with Einsteinian parametriza-
tion: α = 1, β = 1, γ = 1 (see e.g. Soffel 1989).
Choosing the units such that both the mass of the
field-generating body and the Newtonian gravitati-
onal constant are equal to 1, and neglecting the terms
of order c−4 and higher (c=speed of light), the Ha-
miltonian associated to the problem is:
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where q = (q1, q2) ∈ R2\ {(0, 0)} is the position vec-
tor of the particle, whereas p = (p1, p2) ∈ R2 is the
conjugate momentum vector.

Observe that, due to the isotropy of space
(e.g. Soffel 1989), the motion is confined to a plane.
Without loss of generality, we shall consider that the
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(q1, q2)-plane of the reference frame is the motion
plane; this leads to the form (1) of the Hamiltonian.

In this first paper we shall focus on two limit
situations of the motion: the collision and the escape
to infinity.

The collision represents a singularity of the
motion equations. Resorting to McGehee’s (1974)
technique, we blow up the singularity, and past in-
stead of it, on the phase space, a manifold. The
collision manifold proves to be a 2D torus embedded
in the 4D space of the McGehee coordinates. Then
we describe the flow on this manifold; the respective
flow has no physical significance, but allows the un-
derstanding of the behaviour of near-collision orbits.

The study of near-infinity orbits starts from
the motion equations in polar coordinates. By means
of a Sundman-type rescaling of time, we obtain the
infinity manifold, which also proves to be a 2D torus
in the 4D space of the respective coordinates. The
flow on this manifold is decribed, too. Physically,
this flow is no more significant than the flow on the
collision manifold, but it helps us to understand the
asymptotic behavior of escape orbits, as well as the
(escapeless) motion at very great distance from the
source of the field.

To end, we emphasize the mathematical ad-
vantage of the study we start here. The Hamilto-
nian we deal with has a complex structure, involv-
ing both higher powers of the variables and mixed
(coordinate-momentum) terms.

2. EQUATIONS OF MOTION AND FIRST
INTEGRALS

The problem we tackle is described by the
equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, (2)

with the Hamiltonian (1). The concrete form of these
equations is

q̇i = piA,

ṗi = − qi
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with i = 1, 2, and
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Notice that the system is a conservative one,
hence we may write the first integral of energy in the
form

H = h, (5)

where the constant of energy h represents the total
mechanical energy of the system.

The angular momentum of the system is also
conserved, providing another first integral:

q1p2 − q2p1 = K, (6)
where K denotes the constant of angular momentum.

3. McGEHEE TRANSFORMATIONS

To tackle the collision, we leave the Hamilto-
nian character of the motion equations, and perform
the McGehee-type transformations (McGehee 1974;
see also Saari and Hulkower 1981). For the first step
we pass to standard polar coordinates via the real
analytic diffeomorphism

(q1, q2, p1, p2) ∈ (R4\∆) �−→
(r, θ, u, v) ∈ (R\ {0}) × S1 × R2,

where ∆ = {(q1, q2, p1, p2) | q1 = q2 = 0}, while S1

is the segment [0, 2π] with the end points pasted to-
gether. The explicit formulae are

q1 = r cos θ,

q2 = r sin θ,

p1 = u cos θ − v sin θ, (7)

p2 = u sin θ + v cos θ.

The motion equations (3) acquire the form

ṙ = uÂ,

θ̇ =
v

r
Â,
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r
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where (4) led to:
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The first integrals (5) and (6) become respec-
tively:
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rv = K. (11)
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Observe that both (8) and (10) keep the sin-
gularity, which now corresponds to r = 0.

For the second step, we use the real analytic
diffeomorphism

(r, θ, u, v) ∈ (R\ {0}) × S1 × R2 �−→
(r, θ, x, y) ∈ (R\ {0}) × S1 × R2,

which scales down u and v through

u =
x√
r
, (12)

v =
y√
r
.

Equations (8) transform into

ṙ = r−1/2xÃ,

θ̇ = r−3/2yÃ,

ẋ = r−3/2
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2
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in which Ã, B̃ come from (9) as
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The first integrals (10) and (11) are now:

r
(
x2 + y2

)
2

− r −
(
x2 + y2

)2

8c2
−

3
(
x2 + y2

)
2c2

+
1

2c2
= hr2,

(15)

√
ry = K. (16)

The equations of motion are still singular. To
remove this drawback, we have to rescale the time
via the Sundman-type transformation:

dt = r5/2dτ (17)
which bring the equations of motion (13) to the form:

r′ = rxA∗,

θ′ = yA∗,

x′ =
(
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2
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)
A∗ − B∗, (18)

y′ = −1
2
xyA∗,

where primes mark differentiation with respect to τ ,
and we kept by abuse the same notations for the
new functions of τ . In formulae (18) the following
notation was used:

A∗ (r, x, y) = r − x2 + y2 + 6
2c2

, (19)
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Also, we put the integral of energy (15) in the
more convenable form
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Observe now that the system (18) is well de-
fined for r = 0, too. This means that the equations
of motion were regularized with respect to the col-
lision singularity. It is the same for the integral of
energy.

Also notice that, due to the time rescaling
(17), the (fictitious) time needed to reach the colli-
sion is infinite; in other words, the motion equations
are now globally defined.

4. COLLISION MANIFOLD

McGehee’s technique leads to regularized equ-
ations of motion; as a main result, it replaces the
collision singularity with a manifold pasted on the
phase space, as we shall see below. Although this
manifold belongs now to the phase space, it is de-
prived of physical significance. However, due to the
continuity of solutions with respect to initial data,
the fictitious flow on the collision manifold provides
valuable information about nearby orbits.

In our case the collision manifold is given by
the set:

M0 = {(r, θ, x, y) | r = 0 and (20) holds} ,

namely

M0 =
{
(r, θ, x, y) |r = 0, θ ∈ S1;

x2 + y2 = 2
(√

10 − 3
)}

.
(21)

The above set represents a 2D cylinder in the
space of the coordinates (θ, x, y), or - since θ ∈ S1 -
a 2D torus in the same space, both embedded in the
full 4D space of the coordinates (r, θ, x, y).

It is easy to see that M0 is invariant to the
flow; indeed, by (18), r′ = 0 for r = 0, therefore the
full phase space extends smoothly to the boundary
M0.

Also notice that M0 does not depend on the
energy constant h. This means that every energy
level shares this boundary.

To describe the flow on M0, impose the con-
ditions (21) to (19), which become A∗ = −√

10/c2,
B∗ =

(
3
√

10 − 10
)
/c2. With these expressions equa-

tions (18) acquire the form
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Fig. 1.
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The system (22) shows that there exist two
circles entirely formed by degenerate equilibria on
the M0 torus: the upper circle UC defined by θ =

θ0 ∈ S1, x = −
√

2
(√

10 − 3
)
, y = 0. Taking into

account the second equation (22), one sees that all
other orbits on M0 are heteroclinic curves which start
from UC and end in LC. As to their slope, putting
x = z cosϕ, y = z sin ϕ (see for details Ballinger
and Diacu 1993), we easily obtain dϕ/dθ = −1/2.
Accordingly, the phase portrait on M0 is plotted in
Figure 1 (where the torus was represented as the ini-
tial cylinder).

Some remarks are to be made here. All orbits
on M0 tend asimptotically - in infinite (fictitious)
time - to the stationary solutions LC. According to
McGehee (1974), the flow on M0 is gradient-like as
regards the function −x (τ). Lastly, observe that the
set of critical points UC ∪ LC is a compact set.

5. INFINITY MANIFOLD

In a certain sense, the opposite limit situation
for the motion is the escape (r → ∞). Nevertheless,
there is an essential difference between this situation
and the collision: the infinity is not a singularity
for either motion equations or energy integral. In

the sequel the infinity will also be transformed into
a manifold, with the same goal as previously: the
fictitious flow on it contributes to the understanding
of the behaviour of bounded orbits which go very far
from the field source.

There are two ways to reach this purpose; we
shall follow the shorter one.

Denote ρ = r−1, and rewrite equations (8):

ρ̇ = −ρ2uÂ∗,

θ̇ = ρvÂ∗,

u̇ = ρv2Â∗ − ρ2B̂∗, (23)

v̇ = −ρuvÂ∗

with, by (9),

Â∗ (ρ, u, v) = 1 − u2 + v2 + 6ρ

2c2
,

B̂∗ (ρ, u, v) = 1 +
3

(
u2 + v2

) − 2ρ

2c2
. (24)

The angular momentum integral (11) acquires
the form

v = Kρ, (25)
while the integral of energy (10) becomes
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Fig. 2.

The next step is to rescale the time via

dt = ρds, (27)

which transforms the motion equations (23) into

dρ

ds
= −ρuÂ∗,

dθ

ds
= vÂ∗, (28)

du

ds
= v2Â∗ − ρB̂∗,

dv

ds
= −uvÂ∗.

We define now the infinity manifold as

M∞ = {(ρ, θ, u, v) | ρ = 0 and (26) holds} ,

that is,

M∞ =
{
(ρ, θ, u, v) | ρ = 0; θ ∈ S1;

u2 + v2 = 2c
(
c −

√
c2 − 2h

)}
.

(29)

This set is a 2D cylinder or a 2D torus (see
Section 4) in the space of the coordinates (θ, u, v),
both actually embedded in the 4D phase space
(ρ, θ, u, v).

One observes that M∞ is invariant to the flow
(by (28), dρ/ds = 0 when ρ = 0), hence the full
phase space extends smoothly to the boundary M∞.

With (29), the vector field (28) becomes

dθ

ds
= vÂ∗,

du

ds
= v2Â∗, (30)

dv

ds
= −uvÂ∗,

where, by (24) and (29), Â∗ =
√

1 − 2h/c2.
Examining (30), one sees that there are two

circles of degenerate equilibria on the M∞ torus:
the upper circle UC defined by θ = θ0 ∈ S1, u =√

2c
(
c −√

c2 − 2h
)
, v = 0, and the lower circle LC

defined by θ = θ0 ∈ S1, u = −
√

2c
(
c −√

c2 − 2h
)
,

v = 0. Putting, as in the previous section, u =
z cosϕ, v = z sin ϕ, one gets dϕ/dθ = 1. The phase
portrait on M∞ (taken as the initial cylinder) is plot-
ted in Figure 2.

The same result could be obtained in a longer
way (although more elegant). Starting from equa-
tions (18), with the prime integrals (16) and (20),
we apply successively the transformations:

ρ = r−1; (31)

ξ = x
√

ρ, η = y
√

ρ; (32)

dw = −ρ−3/2dτ. (33)
This leads to the same infinity manifold (given

by the integral of energy) and to the same vector field
on it. One observes easily that (ξ, η) are actually
(u, v), and dw = ds.

To end, we notice by (25) that the infinity
manifold can be reached only in the equilibria on
UC. Also, the orbits which come from infinity can
start only from LC.
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6. CONCLUDING REMARKS

Some remarks can be made here:
(i) The energy level (given by h) is important

for the infinity manifold, but does not affect the colli-
sion manifold. In other words, for every energy level
there are orbits which start or end in collision. The
situation is different as regards the infinity manifold.
By (29), M∞ is: a torus if 0 < h ≤ c2/2; a cir-
cle if h = 0; the empty set if h < 0. This means
that the orbits with negative energy levels are always
bounded; the particle cannot escape.

(ii) It is necessary to emphasize the fact that
each of the two manifolds carries its own (fictitious)
time scale (differing from each other).

(iii) For h > c2/2 the infinity manifold be-
comes meaningless. This fact confirms the physical
background of the model within the framework of
relativity.

(iv) The McGehee-type transformations pro-
ved to be a powerful tool in investigating the motion
in such PN fields, even for these two limit situations
only. The continuation of this research will prove
again their efficiency.
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Sistem od dva tela se razmatra u okviru
PN formalizma sa vixim stepenima promen-
ǉivih i mexovitim qlanovima. Koordinatne
transformacije Mek Gehijevog tipa se koriste
radi odstraǌeǌa singularnosti sudara i ra-
di regularizacije jednaqina kretaǌa. Mnogo-
strukost sudara se dobija kao jedan 2D torus

unutar faznog prostora 4D. Sliqan torus se
dobija za mnogostrukost beskonaqnosti. Opi-
suju se fiktivni tokovi na ovim torusima.
Oni obezbe�uju informaciju o skoro sudarnim
putaǌama i o kritiqnim (bekstvo), tj. skoro
kritiqnim putaǌama.
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