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SUMMARY: Low-eccentricity orbits for the case of a spherically symmetric po-
tential are studied. The Lindblad approximation concerning nearly circular orbits
is treated. It is shown that this approximation is a linear one, i. e. it coincides
with the exact formulae when the eccentricity terms exceeding the first order are
neglected. For a special case it is found that the eccentricities up to almost 0.3-0.4
allow these orbits to be treated as low-eccentricity ones.

1. INTRODUCTION

The study of nearly planar and nearly circu-
lar orbits is important bearing in mind the motions
of stars in stellar discs. It is well known that suffi-
ciently long ago a method for treating such kind of
orbits was proposed by B. Lindblad (e. g. Lindblad,
1959). This method is applicable for any particu-
lar form of the potential, but only provided that the
motion is nearly circular. There is also another pos-
sibility in studying nearly circular orbits. It consists
of adapting a general formula for the potential to the
case of a sufficiently small region in a stellar disc (e.
g. Ollongren, 1967). The advantage of Lindblad’s
method is that it results in a very simple differential
equation which yields a sinusoidal dependence of the
radius variation on time. The only question remain-
ing is if such a solution (evidently approximative) is
sufficiently correct.

Therefore, in the present paper this approach
is discussed in more details. The attention is concen-
trated on the purely planar motions and hence, as
more suitable for analysing, the motion in the spher-
ically symmetric force field is examined. A good

example is found where after expanding the basic
formula in the Taylor series and preserving the first
term only (linear in eccentricity), the Lindblad for-
mula describing the distance dependence on time is
obtained.

2. THEORETICAL BASE

First one should define the orbital eccentricity
considering that for it various definitions are possible
(e. g. Kuzmin and Malasidze, 1970; Kutuzov, 1985).
Here the following one is adopted

e =
ra − rp
ra + rp

, (1)

where rp and ra are the distances of pericentre and
apocentre, respectively. The mean distance to the
centre is also introduced as follows

rm =
ra + rp

2
.
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As well known in Lindblad’s classical approach
(e. g. Ogorodnikov, 1958, p. 324) there are three
important steps. In the first one it is assumed that
the angular momentum of a test particle (here the
modulus of the total angular momentum - spheri-
cal symmetry!) is the same as for the corresponding
circular orbit (orbit of equal mean distance to the
centre rm). However, it is well known that for an
orbit of nonzero eccentricity the angular-momentum
modulus is also related to the orbital eccentricity (e.
g. Ninkovich, 1986). It will be shown now that the
approximation used in this step, i. e. the neglect-
ing of the orbital eccentricity, is justified due to the
preserving of the linear term only.

Based on the energy integral we have

J2 =
(1 − e2)2

2e
r2m∆Π

where J is the modulus of the angular momentum
per unit mass, e is the orbital eccentricity and ∆Π,

∆Π = Π(rp) − Π(ra) ,
is the potential difference at the distances of peri-
centre and of apocentre. This difference can be suc-
cessfully represented by expanding the potential at
either of the two distances in the Taylor series about
the mean distance rm, i. e.

Π(rk) = Π(rm) +
∞∑

i=1

(rk − rm)i

i!

(
diΠ
dri

)
rm

,

rk = rp or rk = ra
.
The i-th derivative of the potential can be written in
the following way

(
diΠ
dri

)
rm

= γi(rm)ωc
2(rm)r2−i

m ,

where γi are dimensionless coefficients and ωc is the
cyclical frequency of the circular motion; note that
there is valid γ1 = −1 regardless of the particular
form of the potential. If the mass interior of an ar-
bitrary radius depends on this radius according to
a power law, then the coefficients γi are constant, i.
e. distance independent. Finally due to the symme-
try in the Taylor series with respect to the apocentre
and pericentre one obtains the following expression
for the angular-momentum modulus

J2 = Jc
2(1 − e2)2

(
1 −

∞∑
i=1

γ2i+1

(2i+ 1)!
e2i

)
(2)

where Jc,

Jc = r2mωc(rm)

is the angular momentum of the corresponding cir-
cular orbit.

It is seen from (2) that if the eccentricity pow-
ers higher than 1 are neglected, the factor multiply-
ing Jc

2 in (2) becomes equal to one, i. e. the angular
momentum for an eccentric orbit does not differ from
that of the corresponding circular one as assumed in
the Lindblad approximation. Thus this step is justi-
fied.

The further steps are well known so that fi-
nally the following differential equation is obtained

δr̈ = −(3 − γ2)ω2
cδr , (3)

where

δr = r − rm .

It is often said that any realistic spherically
symmetric potential is expected to be ”something
between” the two limiting cases - that of homoge-
neous sphere and the one of point mass. Since in
both of them the mass within an arbitrary radius
follows a power-law dependence, the coefficient γ2

in (3) is constant, being equal to -1 (homogeneous
sphere), or to 2 (point mass), respectively. There-
fore, in a general case of spherical symmetry one can
expect the coefficient γ2 in (3) to be, though radius
dependent, always within the limits -1 - 2. It is not
difficult to see that then the following solution of (3)
is obtained

r(t) = rm(1 + e sinκt) , (4)

κ = (3 − γ2)1/2ωc , (5)
the last quantity usually known as the cyclical fre-
quency of the so-called epicyclic motions.

It is well known that in describing a finite mo-
tion for the case of spherical symmetry one can de-
fine two important periods, i. e. the corresponding
cyclical frequencies. They are the anomalistic pe-
riod (time elapsing between two successive peri- or
apocentric passages) and the sidereal one (time cor-
responding to the difference of the position angle in
the orbital plane equal to 2π - e. g. Kuzmin and
Malasidze (1970). It is easy to see that the anoma-
listic cyclical frequency is equal to that of epicyclic
motions. As for the relationship between the side-
real cyclical frequency and that of circular motion, it
is somewhat more complicated. Namely, in view of
the angular-momentum integral and equations (4)-
(5) and also taking into account that small orbital
eccentricities are treated here (which allows certain
self-evident approximations), one obtains the follow-
ing expression for the dependence ψ(t) where ψ is
the position angle in the orbital plane

ψ(t) = ψ(0)− 2e
(3 − γ2)1/2

+ωct+
2e

(3 − γ2)1/2
cosκt .
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From here one easily obtains the following relation
which connects the sidereal cyclical frequency ωs
with that of circular motion

2π
ωc

ωs
+

2e
(3 − γ2)1/2

[cos 2π(3 − γ2)1/2 ωc

ωs
− 1] = 2π .

(6)
This is obviously a transcendental equation allowing
the ratio ωc/ωs to be equal to 1 only if the square
root from (5) yields an integer (provided that ec-
centricity is not exactly zero - trivial case!). In the
interval [-1, 2] admitted for γ2 this is only possible
just for the two limiting values. This fact is not sur-
prising because it is well known that only for the
homogeneous sphere, i. e. point mass the orbits
are closed and the sidereal cyclical frequency is ec-
centricity independent. It is interesting to note that
although equation (6) is obtained for the case of low
eccentricities, this conclusion is valid for an arbitrary
eccentricity.

It should be noted that in the more general
case of axial symmetry γ2 can exceed the value of 2,
even that of 3, in the periphery for flattened mod-
els of finite size so that solutions like (4) are no
longer possible. It is interesting to mention that the

case γ2 = 3 also yielding an integer for the ratio in
(5) (zero), like the well-known cases of homogeneous
sphere and point mass, also admits an analytical so-
lution for the orbit as in the cases of the latter two
(e. g. Kuzmin and Malasidze, 1970).

3. A CONCRETE CASE

For the purpose of making the present analysis
as clear as possible a concrete case will be treated.
The homogeneous-sphere potential is chosen. The
main reason is that in this case it is not only possible
to solve the exact differential equation of motion ana-
lytically, but also to represent the dependence r(t) in
an explicit form. In addition, the cyclical frequency
ωc is constant for this model. As well known, the
final equation of motion for the given case is

r(t) = rm(1 + e2 + 2e sinκt)1/2 (7) .

From the said above it is clear that the other cyclical
frequency κ is also constant in this case being equal
to 2ωc. The expansion of the expression within the
parentheses in (7) in the Taylor series yields

Fig. 1 The dependence r(t) for eccentricity 0.1 - solid line according to (4), dashed one according to (7); r
is expressed in units of rm, t in those of anomalistic period.
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Fig. 2 Same as in Fig. 1, but e = 0.3.

B1/2 +
1
2
B−1/2x− 1

8
B−3/2x2 +

3
48
B−5/2x3 + ... ,

B = 1 + e2 , x = 2e sinκt .

As easy to see, if only those terms containing no
powers of e higher than 1, which is also valid for the
constant B, are retained, then (7) becomes

r(t) = rm(1 + e sinκt) ,

i. e. it is reduced to Lindblad’s approximate formula.
The agreement (or disagreement) between (4)

and (7) is presented in Figs. 1 - 2. The main dif-
ference between the two formulae is that due to the
ellipse curvature (as well known the true orbit for
this potential is an ellipse) the time interval between
r = rp and r = rm is shorter than the correspond-
ing one between r = rm and r = ra which is not
the case when the calculations are carried out by
using the approximate formula, where these time in-
tervals are mutually equal. Therefore the values for
the instantaneous distance yielded by the two formu-
lae and corresponding to the same argument, that of
sinκt = 0, are also mutually different. The higher

is the eccentricity, the more prominent is this differ-
ence. For example for e = 0.1 its value is 0.005 only
(in units of rm), for e = 0.2 the corresponding value
is already 2% etc. This difference attains 10% for the
eccentricity value of about 0.46. At the pericentre,
i. e. apocentre (sinκt = ±1) both formulae yield
the same values for the instantaneous distances. It
is clear that by adding the higher-order terms in the
expansion the agreement is improved.

This agreement can be examined in another
way. This is the ratio of the time intervals between
r = rm and r = ra and that between r = rp and
r = rm. As easily seen, according to the approx-
imate formula it is equal to 1. The exact formula
yields approximately, for example, 1.066 for e = 0.1,
1.1 for e = 0.15, 1.136 for e = 0.2 etc. Since due
to the angular-momentum integral the time inter-
val is proportional to the angle, one can express the
results in the angle terms. Either of the time in-
tervals mentioned above, i. e. of the corresponding
angles, will be different from π/2, obtained by apply-
ing the approximate formula, by a small angle. This
small angle compared to π/2 attains about 10% for
e = 0.3. Thus as a final conclusion concerning this
special case, one may say that the linear approxi-
mation, introduced by B. Lindblad, is applicable for
orbital eccentricities as high as 0.3-0.4.
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Of course, one should not forget that the case
considered above is too special. Otherwise we cannot
expect something similar in real stellar systems. A
question concerning the eccentricity limits for such
cases arises. Since an arbitrary spherically symmet-
ric potential appears, as already noted above, as an
intermediate case between the homogeneous-sphere
potential and that of the point mass, something may
be inferred by examining the situation for the lat-
ter one. However, an explicit exact formula like (7)
does not exist for that case (the difficulties with the
well-known Kepler equation). Therefore, the only
possibility is a numerical study including the angles
(true anomalies). It may be said that already for
orbital eccentricities of about 0.2 the linear approx-
imation fails in its applicability. This is not difficult
to understand because due to the eccentric position
of the gravity centre (at a focus instead of the el-
lipse centre) the ratios of the time intervals men-
tioned above are significantly higher than in the case
of the homogeneous-sphere potential for the same or-
bital eccentricity. A preliminary conclusion may be
that for the case of an arbitrary spherically symmet-
ric potential the applicability domain for the linear
approximation most likely does not exceed the ec-
centricity value of about 0.25. This conclusion, cer-
tainly, deserves to be subjected to further examina-
tions. However, it could be of interest in the case
of the Milky Way and other similar galaxies where
the orbits of the disc stars are nearly planar so that
their motion in the main plane can be studied as in-
dependent of that perpendicular to the plane. Then
an additional question arises, namely if their orbital
eccentricities are always low enough to justify the
application of the linear approximation.

4. CONCLUSIONS

The main purpose of the present paper is to
throw more light on the case of planar motion with
angular-momentum integral. The obtained results
show a prospective way in further research consisting
of studying the dependence of the radius, i. e. of
the position angle on time. The circumstance that
here only one of several kinds of orbital eccentricity
is studied is of no importance because for an orbit
of low eccentricity in the sense of (1) the eccentricity
defined in any other way will be also low due to the
general concept of orbital eccentricity.
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LINDBLADOVA APROKSIMACIJA KAO LINEARNA
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UDK 521.11
Originalni nauqni rad

Putaǌe male ekscentriqnosti su prou-
qavane za sluqaj sferno simetriqnog potenci-
jala. Obra�uje se Lindbladova aproksimaci-
ja za skoro kru�ne putaǌe. Pokazuje se da je
to jedna linearna aproksimacija, tj., ona se
podudara sa taqnim formulama kada se zane-

mare qlanovi koji sadr�e stepene ekscentri-
qnosti vixe od prvog. Za jedan poseban sluqaj
je na�eno da se za putaǌe sa ekscentriqnox�u
do skoro 0.3-0.4 mo�e re�i da su malo ekscen-
triqne.
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