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SUMMARY: We present a method for determining orbital elements of visual

binaries from observed relative positions.

This method is especially suitable for

deriving preliminary orbits, and we called it the method of falsified observation
(FO) (Catovié, Olevié, 1992.). Here we give extensive discussion of theoretical and

~ practical merits of the proposed method.

1. INTRODUCTION

- Visual binary orbit calculation is a very old
problem. Many methods for solving it were sug-
gested, but all of them are ”good” in some particular
out not 1n all situations. Let us summarise briefly
what are the major obstacles for constructing meth-
ods which would be effective generally.
. - The major difficulty in solving the orbital mo-
tion of the visual binary is drawing, or placing, the
apparent orbit. Once the apparent orbit is placed,
then geometrical elements (a,e,i,Q,w) of the orbit
are known. On the other hand, since the time is not
involved in placing the apparent orbit, dynamical el-
ements (P, 7) are not determined yet. Therefore, the
second difficulty consists|in assoclating the epochs of
the observed positions to their calculated counter-
parts on the apparent orbit. It is essential problem
8s well and we will discuss it in more details in the
following chapters. '

~ In our opinion, every try to formulate a new

approach should take into account the following re-
quirements:

Requirments following from the theory:

1) Since we are interested in physical binaries

with elliptical orbits, the first requirement co-
mes from geometry of the orbit - i.e. the orbit
must be an ellipse.

11) Since orbital motion of physical binaries is Ke-
plerian motion the second requirement comes

from dynamics of the orbit - i.e. the second
Kepler law must be valid for chosen orbit.

Requirements following from the tools used:

(By this we mean which analytical, or other
tools we used to define an apparent orbit.)

1) Heuristic determination of the apparent orbit,
usually based on the calculators experience,
-1s often used in practice. It requires carefull
examination of input data, or choosing three

observations and areal constant for methods
of Thiele - Innes type.
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ii) Method of least squares (MLS) could be used,
as objective mathematical tool to approach
the problem, but it requires long enough and
curved enough observed arcs in order to pro-

~ vide the ellipticity of the solution.

Since computational equipment and techniqu-
es are very well developed and since equations of con-

dition (geometrical and dynamical) are known from
theory in the case of visual binaries, MLS seems the
best tool for solving the problem of visual binary
orbit determination. On the other hand, however,
since observed arcs are usually small MLS can not
guarantee an elliptical solution. If we take into ac-

~ count the inaccuracy of the input data too, then even

if ellipticity is not questioned, we can expect there
more than one orbit which would be sufficiently ac-
curate. It would be interesting, therefore, to search
for the method by which we can ”check” more than
one orbit for the given observations.

The most used methods in astronomical prac-

tice are described in the classical texbooks on visual
(and spectroscopic) double star astronomy such as

Aitken (1935), Coutou (1975), Heintz (1978). Eic-
 hhorn and Xu (1990) suggested an improved algo-
rithm for solving an orbital motion of visual binaries
based on equations of condition which include geo-
metrical and dynamical conditions simultaneously .

These equations are highly nonlinear and transcen-
dental but the authors used MLS algorithm Eichhorn

(1985) which overcomes this inconvenience. Howe-
~ ver, it should be mentioned that this method needs
initial solution provided by some other method. MLS
algorithm converges if that initial approximation 1s
sufficiently accuarte.

} Dommanget (1978, 1981) gave a general met-
hod (for all eccentricities) for determination of visual

binary orbit based on three fundamental points and

areal constant i.e. based on method of Thiele - Innes
- van den Bos. At the Royal Observatory, Belgium,

this method is widely used for computing the orbital
elements of visual binaries (Nys, 1983.) This group

of methods is based on heuristic determination of
‘three (among all other) fundamental observations as

well as areal constant a priort.
2. EQUATIONS OF CONDITION

Theoretical basis for the method we suggest

here is linear MLS. By this procedure, which 1s di-
vided into two parts, one can exemine large number
- of elliptical orbits associated with one pair. In the
- first, geometrical part, glliptical orbit is determined
by MLS (we denote thereafter this part of the proce-
dure GMLS). Equations of condition are equations of

conical section in the rectangular coordinates, where
all of the elements of the orbit appear as linear pa-

- rameters.

,f%: ;F':*
gty

- coefficients can be reduced by one.

2122 + 20y + 23Yii + 24T + 25y +1 = 0;
1=1,..., N.

where N is the number of observations; x; = g; cos 6;,
y; = o; sin f; are the observed apparent positions and
21, ..., z5 are unknown coefficients - geometrical ele-
ments of the orbit. Having in mind the obstacie to
direct use of MLS, mentioned in the previous chap-
ter, we introduce here the idea of falsified observation

(FO) (Catovié¢ and Olevié, 1992). FO 1s simply an
arbitrary point in zy plane, chosen by the calculator
in order to force MLS to give elliptical solution. The
orbit should pass through (or very close to) FO and
fit the regular observations by satisfying the least
squares principle. Therefore the choice of the posi-
tion of FO is the crucial point in this procedure.

In the second, dynamical part (this part of the
procedure hereafter denoted DMLS), the mean mo-

tion and the moment of passing through periastron
are determined by employing linear MLS again; this
time equations of condition are connections between
mean anomalies and the epochs of observations

nt; —B=M;; 1=1,..., N, (2.2)

where 8 = nr; M; = E; — e; sin E;. Mean anoma-
lies M; are calculated with the help of orbital ele-
ments obtained by GMLS as if they lay on the cal-
culated elliptical orbit (which is not true). Theretore
we will call these mean anomalies M; = M;(zi, ¥, a,
e, 1, , w), observed mean anomalies. However,
since the original observations (observed apparent

places) are not placed exactly on the apparent or-

bit (calculated by GMLS), neither will their projec-

tions on the orbital plane, be placed on the true or-
bit exactly. In this procedure we use observed mean
anomalies for calculating n, 7.

(2.1)

2.1 Further potentialities of equations of
condition

In this subsection we will disscus further possi-
bilities for the equations of condition, having in mind
the idea of introducing FO. If we include FO as reg-
ular observation (but with much larger weight) than

equations of condition for GMLS would be the equa-
tions (2.1). The number of degrees of freedom, or
number of unknown coefficients, in this case 1s five.

But if we demand that elliptical orbit pass

through FO exactly than the number of unknown
; Namely, then
equation

211,'? -+ Zgy? + 23YfLf -+ 24 f + Z5Yf + 1= 0, (23)
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where z;,y; are coordinates of FO, holds. Then we

can calculate one of the coefficients 21, ..., zs as func-

tion of coordinates of FO and other coefficients. Ob-
viously, now there are five different possibilities for

equations of condition, and here, we will write these
- equatlons.

2

_ )

210+ 2 (y? - ;{—x?) + 23 (:v;yf — yf-a:?) +
J

| 2 2
| L L,
24(0:; - -—‘-) + 25 (ye— %‘x?) = "( "" —-5—),

- 9
. , T
| zl(x,? i 4 ;) + 22 (yf — yiyf) + 23(ziyi — yizy)

- +Z4(3£—x—fy£)+25'0:-( "Ei)
-\ Yy Vs
(2.4)

Index ¢ counts observations in all five equa-
tions (i.e. ¢ =1,...,N). In case of equations (2.4)

coeffitients zy,...25 are calculated from:
_ ? Yr 1 Ys 1 ‘
21 = T22T5 T A3T T T 2T — 25— — —5,
| :L'f T f T f .’Bf :L‘f
e _
x T T 1 1
2 = —21—2{- - Za-i — 24‘"%- — &5 T o,
| yr Ys Yy Yr  Yg
rr 1 1 1
3= —n—L -z gy g ,
Yy Lf Yf Ly  TrYs
2
Yr Yf 1
“4 = —2\Xf — 22— — 23Yf — 25—~ — —,
L f Lty Zf
L-'L'.% T 1
5 = —21 T T Z2Yf — 23Tf — 24— — —,
Ys - Yr Yy
| (2.5)
respectively.

As for DMLS there are some possibilities for
different approach as well. This time the type of
equations of condition remains, but the problem of
association of the anomaly to the epoch could be
solved 1n different way. For instance, if we asso-

clate apparent observed position (z,y) to its coun-
terpart (z’,4') on the apparent orbit which is placed

on the intersection of the apparent orbit and line
drawn from the primary A, to the apparent place
B (see Fig. 1). Then we can project that point

- 1ntersection on the true orbit (with elements ob-

tained by GMLS) in order to obtain mean anomaly
M' = M'(z',y,a,e,i,Q,w) and associate it to the
epoch of observation.

Another possibility is to associate the appar-
ent observed position (z,y) to its counterpart (Z, §)
on the apparent orbit which is placed at the min-
imal distance of the point B to the apparent or-
bit (see Fig. 1). Then the corrensponding mean
anomaly, associated to the epoch of observation ¢,
will be M = M(Z,y,a,¢,i,Q,w)

Although we did not compare results of these

different aproaches yet, we beleive that it could be
interesting for further investigation. The problem

- of association of the anomaly to the epoch did not

receive attenion yet (to our knowledge) although it

1s an essential problem.
Finaly, let us note that DMLS part of the
procedure is implicitly dependent on the solution by

GMLS. It gives the best solution (in the sense of the
least squares) for n and r if true places (apparent

places projected by parameters obtained by GMLS)
and the corresponding epochs are known.

B(X.Y)

B”(X”,Y"
B'(X'.Y')

A(0,0)

apparent orbit

Figure 1.
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works with simulated observations. Table la con-
tains simulated apparent places and (O — C) cor-

renspondig to two calculated orbits. Figure 2 shows
these orbits plotted on the tangent plane. Table 1b
shows input orbital elements, and two sets of output
orbital elements, corrensponding to two FO-s. The
first one is placed on the apparent orbit exactly, and
input elements are returned. The second 1s shifted
from the apparent orbit. Table 1b contains also areal
constants calculated for three arbitrary chosen areas.
This subroutine (calculation of areas of elliptical sec-

tors) in the programme is very usefull in comparing

orbits. It could reveal which orbit fulfills law of areas
better.

3. EXAMPLE

On the basis of principles discussed in the pre-
vious chapter we developed a FORTRAN (MS FOR-

TRAN 5.1running on PC) routine for calculating or-
bital elements of visual binary. Equations of condi-
“tion, in this case, are equations (2.1), which means
that FO is treated as regular observation with great
weight (equal to the sum of weightes of all other ob-
servations). Equations of condition for DMLS are
“equations (2.2) and M;-s are observed mean anoma-

lies discussed in the previous chapter.
First, let us demonstrate how the programme

Table 1a. Observations (test example)

n_ | time 02000 (O - C)s,
01 1995.50 | 0.721 108.714 .0000 -.0008 1112 17.5311
02 | 200305 | 0.855 | 150.238 |  .0000 | .0014 | 0976 | 1.0039
03 | 201060 | 0.997 | 179.540 |  .0000 | -.0009 | 0177 | -2.9277
04 | 2018.15 | 1.098 | 202.38 |  .0000 | .0004 | -0218 | -2.5725
05 | 202570 | 1172 | 221.897 | .0000 | -0010 | -.0299 | -1.5185
06 | 203325 | 1.236 | 239.263 |  .0000 [ .0000 | -.0216 | -0.6465
07 | 2040.80 | 1.297 | 254.962 |  .0000 | 0009 | -0075 | -0.1679
08 | 204835 | 1.355 | 269.271 |  .0000 | -.0002 | 0054 | -0.0429
09 | 2055.90 | 1.407 | 282454 |  .0000 - .0005 | 0130 | -0.1295
10 | 206345 | 1.445 | 294.807 | .0000 | -0004 | .0134 | -0.2799
11 | 2070.99 | 1.462 | 306.679 |  .0000 | .0002 |  .0065 | -0.3634
12 | 207854 | 1.451 | 318495 |  .0000 | -.o0007 | -0063 | -0.2837
13 | 2086.09 | 1.400 | 330.819 |  .0000 [ .0000 | -0216 | 0.0464
14 | 209364 | 1.302 | 344529 |  .0000 |  .0008 | -.0333 | 0.7021
15 | 210119 | 1149 | 1223 |  .0000 | -.0004 | -02904 | 1.6889
16 | 210874 | 0.946 | 24242 |  .0000 | 0010 | 0104 | 23517
17 | 211629 | 0.754 60.009 .0000 -.0017 0888 -2.5926
Table 1b. Orbital elements and areal constant
input elements output elements; output elements,
a=1"213 Q=168°49| a=1"213 0 =168°49 | a=1"249 Q = 178°68
e=0329 i=231°23 | e = 0.329 i=31°23 | e = 0.392 i = 37931
P=12834yr. w=269°48| P =128.34yr. w=269°48 | P=12422yr. w=286°47
T = 1995.0 7 = 1995.50 T = 1997.49
- or, = 0.7209668 6;, = 108.713513 07, = 0.60 f;, = 110.0

AC; 3 = 0.0290831
| AC15,17 = 0.0290831
ACs 11 = 0.0290831

AC 3 = 0.0234916
| AC15,17 = 0.0268590
ACs 11 = 0.0285662
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1.5

o-lirst orbit
@—second orbit

TEST

Figure 2.

4. CONCLUSION

From theoretical point of view, the introduc-
tion of FO opens two very important ques-
- tions: '

a) can we determine the area of FO’s which pro-
~ vide elliptical solutions?
~b) if answer to question a) is positive, are we able

 to select those FO’s, among all, which fullfill
dynamical condition?

Choice of FO could be conditioned in some
way but the problem is that every try to do so per-

turbes the linearity of equations of condition (2.1) or

(2.2) and (2.4), and therefore complicates the proce-
dure. On the other hand, nowadays it must not be
treated as a problem since extensive computations
could be done easily. In any case, it seems to us that
this problem still deserves some attention of the re-
searches. Furthermore, different types of equations

of condition (2.1), (2.4), should be studied more from
both practical and theoretical points of view.
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 OIPEBUBAILE OPEMNTA BU3YAJIHO IBOJHMNX 3BE3IA. JEIAH MOI'YRH IIPIJIAS.

3. hatosuh! u II. OneBuh?

! Kamedpa 3a acmpornomujy, Mamemamuuku gaKyamem, CmyoeHmecku mpe 16, 11000 Beoepad, Jyezocaasuja

2 Acmporomcka oncepeamopuja, Boaeuna 7, 11050 beoepao, Jyzocaasuja

YIIK 524.382
OpuzuHaAHU HAYUHU pao

Y pany je NpelIcTaBJbeH jedaH IIOCTYIIaK OX- MeTtox je morojaH 3a onpehuBame NpeIMMM-
pehiBama MyTaHCKUX €JeMEHATa BHU3yaJlHO OBOJHMX  HapHe opbure. Y pany ce OUCKYTY]Y TCOPHMJCKE U
3Be3a METOOOM HajMamMX KBaJgpaTa KOpMCTEhH “Jla-  TMPAKTUYHE IPEIHOCTH TIPCIJIORCHOI MOCTYIIKA.

KHO” [10CMAaTpame (falsified observation — FO).
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