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SUMMARY: Some general properties of bound orbits and of orbits of capture in
spherically symmetric fields in Rosen’s theory are studied throught basic inequalities
implied. Homogeneous coordinates are used.

1. INTRODUCTION

- This paper is a continuation of the previous
~one (Lukacevié¢, 1994), published in this Bulletin.
The essential contibution here is the analysis of some

general characteristics of planetary orbits in a spheri-
cally symmetric gravitational field in Rosen’s theory:.

... As different from both Newtonian and ‘clas-
sical]ly relativistic celestial mechanics, Rosen’s the-

~ory, as was shown in Lukacevi¢ (1986), Lukaéevié

and Catovi¢ (1992), allows nonstatic spherically sym-
metric gravitational fields. These fields are induced
through a conformal factor, necessarily dependent
upon time and st least one space-like coordinate.

That coordinate has been chosen to be a modified
form of the radial distance from the gravitational

source (Lukacevic¢, 1994; Lukacevié, 1986), which is
almost identical with the geometric radial distance
for sufficiently distant bodies. That assumption is
physically justified. The conformal factor, which is,
in Rosen’s theory, a solution of the wave equation;
reduces to a mere constant in classical relativity.

.. In the second section we formulate both Ro-
sen’s spherically symmetric line element and the well

known Schwarzschild line element. Then the Schwar-
zschild metric is trensformed to homegeneous coor-

dinates in order to get the relativistic Binet formula
In that system. That is done because Rosens met-
ric 1s formulated in homogeneous coordinates only.
In the third section we formulate the geodesic equa-
tions for Rosen’s nonstatic metric, wherefrom we ob-
tain the corresponding Binet’s formula and analyze
1t for bound orbits and for orbits of capture. The
static case in Rosen’s theory has not been taken into

consideration as it has been studied by Z. Catovié
(1992), thoroughly and with the use of computer sim-
ulation.

2. STATIC FIELDS

The metric element in Rosen’s bimetric grav-
1itation theory reads

ds® =e*M/"(dr? + r2dv¥? + 2 sin? 9dA?)—
--2M/1'dt2. .

(2.1)

€
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" The space-like part of this metric is, as can be seen,
conformally equivalent, through a conformal factor

ezp(2Mr~1), to the Euclidian metric element, ex-

pressed with respect to a spherical coordinate sys-

tem. This means that the coordinates used are 1so-
tropic. In order to dtudy analogies between two the-

ories, let us write first the Schwarzschild line element
in its classical form

2 dR? 2( 1,92 1 ain2 2
ds? =——— + R*(d¥* + sin® 9dA*)—
' =% (2.2)
2m
(1-— —R—)dt2.

R is the radial distance form the central gravitational
source to a point in space, 2m is the gravitational
radius. If one performs the transformation R — r

m
= r(l 4+ —)? 2.
 R=r(4g) (2.3)
the result will be a spherically symmetric line ele-

ment of the form

ds? =(1+ 52)*(dr? + r?dd? + r* sin® 9d7)-

(1 - m/zr)2 ,

— ] dt

14 m/2r

' ” - (2.4)

" which is analogous, in the classical general relativity,

to the metric element (2.1) in Rosen’s theory, i.e., it

~ is an isotropic metric element, the variable r being,
by (1.3), a function of the radial distance R. It s, 1N

fact, a slightly modified radial distance, as r differs

from R by a small quantity; m (and consequently M

in Rosen’s theory) being small compared to r in the

problems of celestial mechanics.
Let us begin with Binet’s formula of celestial

mechanics In classical relativity (Papapetrou, 1974)

d? (1 4 1 m X 3m

, d)\2\ R R a2 R?
where a is the well known constant of the Keplerian
integral of motion. If we perform the transformation

1.3) and put, for convinience, u = r~!, equation
( P q
(2.5) will, after some manipulations, take the form

(2.5)

1, 1
u'! - 2m——— 1 —1-4-mu u'’ + u—————-———l T -fmu =
. _ 1 - zm2u2 1— -2-mu (2 6)
-~ m(l+ tmu)’ N 3mu® (o = du )
T a2(l-imu)  1-imPu? 0 dA

We note, 1n the above formula, that it is not only
" more cumbersome than (2.5), but that a term with
u’ appears, which was not the case when Binet’s for-

" mula was expressed with respect to R™1.

In order to analyze (2.6) at the characteristic
points of the orbit, we shall establish first the relation
between the derivatives (with respect to A) of R and

r. From (2.3) follows immediately

2
R =r(1- -T——),
472 o7
, m2 . m2r'’ (2.7a)
' e 0
R"=r(1 4r2)+ 2r3
Further, by the definition of u
/ 9 12
o = __52_’ ! — __1'___;.5_’:.’.'_ (2.7b)

We see that at the periastra and apoastra, character-
ized by R’ = 0 we have ' = 0 and R" is proportional
to r"’, but we have also u’ = 0 and u” is proportional
(with changed sign) to r”.

Let us consider now the celestial body at the
periastron, By (1.7a-b) its orbit 1s characterized at

this point by
u =0,u" <0
wherefrom, by (2.6)

m(1 + -1-mu 3 3mu2 -+ lmu
2( = ) + 5 > U - (2.8a)
a?2(1 - imu) 11— gm?u’ — mu
and consequently, at the apoastron
' =0,u">0
with
m(1 + 3mu)? 3mu? 1+ 2mu
> 3 + — <UT—1 (2.8b)
a?(1 — smu) 1-— zmu 1 — smu

The value up, corresponding to the periastron, be-

ing greater than the value u,, corresponding to the
apoastron, we have therefore

(2.9)

Up > Uq

3. NONSTATIC FIELDS

In the preceding section we formulated two
spherically symmetric fields, (2.1) and (2.2) (or
(2.4)), in two different gravitational theories (both

static). But we formulated some conditions for the

" motion of a celestial body in one of them, in classical

relativity only.
We shall consider now a nonstatic field in Ro-
sen’s theory. By Birkhoff’s theorem such a field 1s not

possible in classical relativity. The metric element of
a nonstatic spherically symmetric field in Rosen’s
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‘theory is conformally equivalent to the static met-
ric element (2.1), through a conformal, factor which
depends on r and the coordinate time ¢

4§ =2 D[e2M/" (dr? 4 r2d9? + r? sin? 9dA?)—

(3.1)

where ¢ is a solution of the wave equation (Lukace-

vi¢, 1986; Lukacevi¢ and Catovic, 1992.

The differential equations of motion of a ce-
lestial body in the equatorial plane of the spherically
symmetric field (3.1) are the geodesic equations of
that field. They are three altogether, the fourth one,
corresponding to 9, reduces identically to zero as the
orbit lies in the equatorial plane.

The equation which corresponds to the vari-
able A yields the Keplerian integral of motion.

122AMr= +p(r,1)] 32

. ds

Substituting d§ by d in the remaining two differen-
tial equations of geodesic one obtains

(3.2)

= | = const.

r!l — -12—.-(1 — —J‘ri)r"'2 +2M — r+

(3.3)
1—2_1,462(Mr"1+tp) (6_90 + _A_{_ = () ,
or  r?
't" L _2_(1 _ ?ﬂ)rltf_
T r (3.4)

I.—‘2r4e2(3Mr"l+‘P)_8_£ =0

, | ot
where f! = %. The system (3.2)-(3.4), (Lukacevi¢,

- 1994; Lukacevi¢ and Catovié, 1992) is basic for the
study of motion in the relativistic one-body problem.
Making use of the variable u = r~! equation (3.3)
takes the form

u — M — %)u"’ +u(1 - 2Mu)+

_ 3.9
| 126(2Mu+%0) (?_"2 — = 0. ( )
Ju

It is interesting that (3.5), which corresponds to a
time-dependent field, is less cumbersome than the
differential equation (2.6) for classically relativistic
(1.e. static) gravitational field.

a) Let us consider the extremal points of the orbit.
~ Assuming thai such points exist, we shall have, by
analogy with (2.8a), (2.8b) and by (2.7a), (2.7b), the
following inequalities:

At the periastron -

wW=0u"<0&

& ut BHMUHI L 5 b (9y 4 PHMUte))
(3.6a)

and consequently, at the apoastron

W =0,u">0&

(3.65)

The general conditions satisfied by ¢, obtained In
Lukadevi¢ and Catovi¢ (1992) read

Op _ . Op
?97<0,“5;>0

u’ being null, by (2.7b) and the second inequality
(3.7), one obtains from (3.4)

(3.7)

tH — I—2r462(3M1"_1+¢P)%§"_ < 0

That condition ought to be satisfied in both extremal
points. This requirement seems somewhat surpris-
ing, but it is a consequence of the nonstatic charac-
ter of the gravitational field. We point out that the

left-hand-side of the Keplerian integral (3.2) depends

explictly on time, which is also a consequence of the
nonstatic metric.
Let us consider formulas (3.6a-b). By the sec-

ond inequality (3.7) we have

Jyp _20p

du | Or <0
There results, by (3.9), that the magnitude of the
second term on the left- hand-side of (3.6a-b) is the
determining factor. That term, being negative, re-
verses the 1nequality for a sufficiently large r.
b) Let us consider the possibility of motion of the
body on an orbit of capture. Such orbits, togather

with bounded ones previously considered, have been
studied by Catovi¢ (1992), in the static case. Com-

parisons have been made in Catovi¢ (1992), with or-
bits in Schwarzschild’s metric, based on computer
simulations. We shall analyze here the qualitative
side of the question, the function ¢ being, by its def-
inition, largely undetermined.

~ The essential assumption for an orbit of cap-
ture 1s

(3.8)

(3.9)

r' <0 (3.10)

during motion. By (3.4) and the first inequality
(3.7), as t’ > 0 necessarily, we obtain

t" >0 (3.11)
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which means, as t’ is the reciprocal value of ¢, that
" the orbital motion around the central body 1s ac-
celerated. That is a consequence of the decreasing
distance between the moving body and the gravita-

tional source. _ _ _ '
" The differential equation of radial motion (3.3)

" is somewhat more complicated to interprete than

(3.4). For

r—2M + %—-(1 — —}‘g—)r‘r2 >

. 3.12
1m2p42(MrT R 4e) ?_f_ + _Af_f_ ( )
or r?
one has, by (3.3) and (3.7)
' r’" >0 (3.13)

which means that the motion 1s, by (3.10), radially
decelerated, i.e. the radial fall is slowed down. The
inversion of the inequality (3.12) implies the inver-
sion of the inequality (3.13). The inequality (3.12),
and consequently (3.13), is obviously easier satisfied

for ¢ < 0 than the converse case, although this 1s not

in itself a condition in the strict sense. |
Let us assume, for simplicity, ¢ negative and

of the form given by the equation (2.11) in (Lukage-
vié, 1994), that 1s

1
P = “§¢(t — r) (3.14)
- with further assumptions
' o - oY(t —r)
- YP(t-r)>0, 3t — 1) >0 (3.15)

P being'a po_sitive definite function in space time. ¢,
defined as above, satisfies the wave equation (Tikho-
nov and Samarsky, 1953) in the case of waves gener-

ated by the central source (outgoing waves), which 1s
the central body. Conditions (3.15) ensure that (3.7)

is satisfied. The radial velocity r’ of the body mov-
ing on the orbit of capture is not assumed very large
‘a priori at least during the period of motion con-
sidered. This means that in (3.12), under physically

reasonable assumptions, the term 2r~1(1— Mr~1)r’ 2
is certainly smaller by its order of magnitude than
the term r — 2m. Simultaneously, the term r* de-
creases faster than r, whereas the exponential func-
tion at the right-hand-side is very nearly unity; the
same is true of the term between parentheses. So
the inequality becomes stronger during the fall, de-

spite the fact that r’ possibly decreases. Finally, we
~ assume that

OY(t — '

AUkl P!
ot —r)

i.e. v is slowly varying function of 1ts argument, so

that the partial derivative of ¢ at the right-hand-side
~ of (3.12) is small enough to ensure that inequality.

52

(3.16)

4. CONCLUSION

We restricted ourselves, in this paper, to the
qualitative aspect of the motion of a celestial body 1n
a nonstatic spherically symmetric grvitational field.
We underline that, in Section 2, only the central field
in classical relativity was considered, which 1s neces-
sarily static, in order to make a comparison between
the forms the differential equations of motion take in
polar and in homogeneous coordinates respectively.
The rather cumbersome formula (2.6), compared to
the well-known (2.5), gives an idea of the comph-
cations aroused by the transformation (2.3) of the

radial coordinate.

One of the interesting features of a nonstatic
field is the fact that, in case of periodic orbits, the

extremal points, considered in a), i.e. the periastron
and the apoastron, satisfy the same inequality (3.8).
That is , to our mind, a strong argument in favour
of the probabilty of motion of celestial body on or-
bits of capture, exposed in b), hold at least as long

as the respective values of R and r in (2.5) do not
differ noticeably, that is, down to a minimal value
of r, which is naturally limited by the radius of the
central body. This implies, of course, that the min-
imal value of the radius is noticeably greater than
the value which would correspond, in classical rela-
tivity, to the ”gravitational radius”, rmin >> 2M,
but which does not represent a horizon in Rosen’s
theory.

As we have seen, the inequalities which have
to be satisfied for two types of motion, periodic (or

bounded) orbits and orbits of capture, are allowed
in a nonstatic field. But it is possible that, because
of the time dependence of the metric, periodic or-
bits become unstable after some time, and tend to
become orbits of capture. We particularly point out
the fact that we chose a negative function ¢, as it
was assumed to satisfy the condition r — 00, — 0

(which holds for a wave functions (Fock, 1959) and

results from (2.14), ¥ being a finite function in the
whole of space-time). There results that, with such

a sign, the second inequality (3.7) is satisfied 1n the
whole space-time, whereas ¢, for r and t sufficiently
large, becomes necessarily a slowly varying function
of 1ts argument.

In general, I conclude that the motion on or-
bits of capture has to be the object of further detailed
study. '
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O OPBMITAMA Y HECTATUUYKIVM CPEPHO CMMETPUYHIM IIOJEIMA Y PO3EHOBOJ
' BbVIMETPNYKOJ TEOPNJU I'PABUTAILLNJE

I. JlykageBuh

Mamemamuuku gaxyamem, Cmyoencmxu Tpe 16, 11000 Beoepao, Jyzocaasuja

YIOK 524.3-55
Opu2uHaaHu HayuHu pao

, WsyuaBajy ce Heke omuTe 0COGHHE 3aTBOPEHUX
opﬁma 1 opbura 3axBata y cdepHO CHMETPUIHIM
nojsiMa y Po3eHOBOj GMMETPUIKOj TEOPH jU I'PaBUTA-
IMje. YCJIOBH 3a 3aTBOpEHE (MepuoaniHe opoute Qop-

MYJIMIIY Ce Yy KapaKTEpUCTUYHMM TadkaMa (Tiepuac-

TPY M aroacrtpy), HOK ce 3a opOuTe 3aXBaTa [IOCTaBIba
OIMITH YCJIOB Op3VHU padUjajIHOr Maja. JYKasyje ce
Ha TO IOa Cy 3aTBOpeHE opOuTe, ¢ 003MPOM Ha HeECTa-
ILMOHApHOCT, BEPOBATHO HECTAOMIIHE.
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