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SUMMARY: The unperturbed motion in Maneff’s gravitational field (generated
by a quasihomogeneous potential) is being considered. The trajectories (preces-
sional conic sections) representing solutions of the Maneff two-body problem are
found to appear just as (arcs of) conic sections in the velocity plane. The only

- case of astronomical interest, the (arcs of) ellipses one, is fully discussed and some
remarks are made on qualitative behaviour of the motion.

1. INTRODUCTION . Such a model, able to maintain the simplicity

and the advantages of the Newtonian one, and also
to provide the necessary corrections such that the or-

. \ : . bits coming close to collisions match theory with ob-
~Important questions in physics and astronomy; in servation, 1s hard to find. The post-Newtonian non-

particular it showed that the natural, unperturbed | 01o4ivisie gravitational laws generally failed, from
motion in the solar sy stem 1s precessional (the tra- . applicative astronomical standpoint, in explain-
Jectories are conic settions whose focal axes rotate ing simultaneously certain questions as those con-
In the plane of motion). Unfortunately, as regards cerning the secular motion of both perihelia of inner
the usefulness of such a tool for celestial mechanics, planets and Moon’s perigee. Among such attempts
all attempts to formulate a meaningful relativistic there was however one exception: the law proposed

n—body problem have failed to provide valuable re- by Maneff (1924, 1925, 1930 a, b) on the basis of

sults (see Diacu et al., 1995). Thus, already in the physical principles, model which describes accurately

twenties, there has appeared the necessity to create a both above issues, providing — at least at the solar
gravitational model that could offer to astronomy the system level — an equally good justification as the

same answers as the relativity and equally respond relativity (Hagihara, 1975).
to the theoretical needs of celestial mechanics.

The general relativity theory answered many
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- Reconsidered very recently (Diacu, 1993,
1996; Diacu and Illner, 1993; Diacu et al., 1995; Del-
gado et al., 1995; Mioc and Stoica, 1995 a, b), Man-

eff’s gravitational field appeared much less common-
place and much more unusual than at first sight, re-
vealing new properties, very interesting and surpris-
ing at the same time. To give some supplementary

examples in order to emphasize its importance, we
mention that: as regards celestial mechanics, Man-
eff’s case represents the only bifurcation of the flow

among all quasithomogeneous potentials (Diacu,

1996), as well as the lowest order case for which the
so-called black hole effect (nonrectilinear, but spiral
collisions) occurs (Diacu et al., 1995; Stoica and Sto-
ica, 1995); as regards astrophysics, a Poisson-type
equation corresponding to Maneff’s potential would

lead to new models of stellar interior and to new
scenarios of stellar evolution (see Ureche, 1995); as

regards theoretical physics, lea,vin% aside the mod-
eling of the Coulombian potential by a Manefi-type

one (see Sommerfeld, 1951), an anisotropic Maneft

model could contribute to a better understanding of
the connections between classical and quantum me-

chanics (Diacu, 1993), and so forth. As one can see,
this model offers a wide field of investigation covering

various domains of research.
~ As proved by Krpié and Anicin (1993), the Ke-
plerian trajectories of the Newtonian two-body prob-

locity. In this paper we treat the trajectories cor-
responding to the Maneft two-body problem in the

same velocity plane. These ones prove to be (arcs
of) conic sections (including hyperbolas and parabo-
‘las), but we dwell upon ellipses only, the sole case of
~ astronomical interest.

2. EQUATIONS OF MOTION AND FIRST
INTEGRALS

. 'Consider the two-body problem in Maneft’s
field, generated by the potential (e.g. Diacu, 1993;
Diacu et al., 1995):

[ — _M[H

r

3G’(n;::2—’l: mz)} , (1)

where my, mo are the masses, r is the distance be-
tween them, G is the Newtoman gravitational con-
stant, c is the speed of light.

i The force field being central, the motion in the
~ dynamic system (my, ma) will be restricted to a fixed
~ plane. Denoting g = G (my + m2) and using polar
coordinates (r,u), it is easy to see that, with the
potential (1), the relative motion of mz , say, with

respect to m; , will be described by the equations
(Mioc and Stoica, 1999 a, b):
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. u  3(ufc)?
r-—-ru2+;§-+ (ré) =0, (2)
ri+2ru=0, (3)

with the following initial conditions:

(r, u, 7, u)(to) = (ro, %o, Vocosa, Vpsin a/ro) ,

(4)
where V is the velocity and o is the angle between
the initial radius vector and initial velocity.

Obviously, the angular momentum 1s conser-
ved and (3) provides the first integral:

r’u=1L, (5)

where L = roVpsin « is the constant angular momen-
tum considered positive (direct motion). The first

integral of energy can also be easily obtained by the
usual technique: '

2
V2 — ,:.2 + (,,,,&)2 — _2_:7“'_ 4 3(“/0)

+h, (6)

where h = V& — 2u/ro — 3(u/c)?/ré is the constant
of energy.

3. TRAJECTORIES IN VELOCITY PLANE

It is clear that the conservation of the angular
momentum restricts the velocity space to a plane.
So, let V; = r, Vi, = ru be the polar components of

the velocity. Putting V4 in (5), the latter reads

r=L/Va . (1)

Substituting r given by (7) in (6), the latter
becomes:

Observe that we have assumed tacitly that
L # 0. Indeed, for L = 0 (radial motion) we have

Vi, = 0 and the study of the trajectories in velocity
plane becomes meaningless.

Equation (8) represents a family of conic sec-
tions in the (Vy, V;.) plane: hyperbolas, parabolas, or

ellipses as (L% — 3(p/ c)?) is negative, zero, or posi-

potential in a Newtonian two-body problem. As the
”perturbing force” is central, recall that the focal
parameter of the osculating conic sections remains

constant all along the motion (p = po) . Suppose that
L2 (= ppo) < 3(p/c)? ; this leads to po < 3u/c® , the
latter quantity being of the order of Schwarzschild



UNPERTURBED TRAJECTORIES IN MANEFF’S GRAVITATIONAL FIELD ARE ELLIPSES IN VELOCITY PLANE

(h).

Fig. 1.

radius of the central body. It is obvious that this is

not a realistic case among concrete astronomical sit-

‘uations, so we shall leave it aside and, consequently,

we shall not study the hyperbolas and parabolas in
the velocity plane.

- For the family of ellipses represented by (8)
for L? > 3(u/c)? , let us denote

hence (8) acquires the form

+-==1. (10)

This 1s the equation of the generic ellipse of the
family, whose center has the coordinates (w,0). The

semimajor axis is a, the semiminor axis is b (both
having the dimension of velocity), while the eccen-

tricity is e = /1 — p/(Lw) = v/3u/ (cL). Since in

- concrete astronomical situations L2 3> 3(u/c)? , one

sees easlly that the ellipses (10) are very little eccen-
tric. With L and A fixed by the initial conditions
(4), w,a and b, given by (9), specify completely the
ellipse.
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Consider a point on the ellipse, and let the
corresponding point on the director circle be defined
by the polar angle . The components of the velocity
in the given point on the ellipse will be:

L, =acosy +w ,
_ Ve = bsin Y .
Replacing V, given by (11) in (7), taking into account

(9), and denoting p* = L/w, €* = 1+ hL/ (pw) =
a/w, the expression (7) for the radius vector r be-
comes:

(11)

p#
" T 1fe*cosy (12)

which is the equation of a conic section of focal pa-
rameter (semilatus rectum) p* , eccentricity e* , and

polar angle 1. Indeed, as Diacu et al. (1995) showed,
trajectories in the two-body problem for Manefl’s
field can be considered as precessional conic sections

(namely conic sections whose focal axes rotate in the
fixed plane of the motion); the apsidal motion 1s re-

vealed by the fact that (cf. Diacu et al., 1995):

LvwlL

VA(L — row) tana

- (13)
It is easy to see that the angle ¥ (which, by def-
inition, may be considered as an equivalent of the
eccentric anomaly for the elliptic "motion” In the
(Vu, Vr) plane) is just the true anomaly for the mo-
_tion on the precessional conic sections (at the 1nitial
instant u = ug , @ = ®/2, ¢ = 0).

~ Let us now see how different types of pre-
cessional conic sections (12) are represented in the

(Vu, Vi) plane (Figure 1).

If the trajectory is a circle (of radius p*), we
have e* = 0, hence h = —pw/L (the lowest possible
value of the constant of energy) and (9) gives a =
b = 0. The velocity diagram reduces to the point (c),
for which V =V, = w.

For precessional ellipses, 0 < e* < 1, hence
—uw/L < h < 0 (the constant of energy 1s still
negative, but is greater than that corresponding to
the previous case), hence a < w. The velocity di-

agram is an ellipse (e) which does not touch the

Y =, -f—l-:(u — ug) + arctan

V. —axis. At pericentre (P) the velocity is maximum

(V = Vy = w+ a), and mmimum (V=Vu=w-—a)
at apocentre. For the points where the focal pa-
rameter touches the trajectory (FP), the radial ve-
locity is maximum (V; = b), and we have Vu = w,
V = Vw? + b2, -

For precessional parabolas, e* = 1, h = 0,
and (9) gives @ = w; the corresponding ellipse (p)
in the (Vu, V;) plane is tangent to the V,—axis. At
pericentre V = V,, = 2w, while for FP the previous
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situation is recovered (V. = b, V4 = w). When ¢ —

x, we have V, — 0, V. — 0. ,
Lastly, for precessional hyperbolas, e* > 1,
h > 0, and consequently, by (9), a > w. The cor-

responding velocity diagram (h) is an arc of ellipse

restricted to the halfplane V, > 0. In P we have
V = Vo = w+a, in FP we have V; = b, Vu = w.

When v — arccos (—w/a) we have Vo — 0, V, —

(b/a) Va? — w?.

Of course, all above characteristic values can
also be expressed in terms of pu,¢, L and h, or —
more intuitively — as functions of u,c and initial

conditions. .
Finally, let us make Maneft’s potential tend to

the Newtonian one, that is, let ¢ — oo in (1). In this
limit, according to (9), a = b= /h+ pu2/L?, hence

(10) is the equation of a circle of radius /h + p2/L?

and center (w, 0) in the (V,;, V;) plane. Leaving aside
the differences of notation, we recover in this case the

results obtained by Krpié¢ and Anicin (1993).

4. CONCLUDING REMARKS

Reviewing the above results, one can formu-
late some conclusions concerning the qualitative be-
havior of the motion in Maneff’s gravitational field.

In velocity plane all trajectories are (arcs of)
conic sections. The families of hyperbolas and pa-
rabolas represent in terms of physical motion only
collisional-type orbits (unbounded or bounded), but,

as shown in Section 3, they do not reflect concrete as-
tronomical situations. The ellipses in velocity plane
correspond to stable motion for he < h < 0 (cir-

* L

cles for h = h. , quasiperiodic or periodic orbits for
h. < h < 0), and to unstable motion of unbounded
noncollisional-type for A > 0.
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- HEIIEPTYPBOBAHE IIYTAKBE Y MAHE®OBOM I'PABUTAILIOHOM IIOJBY
CY EJIMIICE Y PABHH BP3VTHA
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OpuzuHaaHu HAyYuHU pao

- PasmatpaHo je HenepTypGoBaHO KpeTame y Ma-
He(pOBOM I'pPaBUTAIIOHOM I10JbY (M3BENECHO OX jeXHOr
KBa3MXOMoI'eHoOT NoTeHNMjaa). HabeHo je ma ce my-
Tale (IPELECOHN KOHYCHHU IIpecely), Koje IpeacTa-
BJBaJy pelliere MaHedoBor rpoGiemMa IBa Tejia, Ioja-

BJBYJy CaMO Kao JIYKOBU KOHYCHMX IIpeceka Yy paBHU
Op3nHa. JEOMHM acTPOHOMCKM MHTEpECAHTaH CJIyda]
(CTUNTUIHYN JIYKOBU) IIOTIIYHO je OIMMCAH M IATE CY

HEKe npuMeabe Ha KBaJIMTATHMBAaH ODJIMK KpeTaHa.
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