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_ SUMMARY: A new, fully analytical perturbation theory for low satellites, in-
tended for a preliminary study of their orbits, is presented. This theory uses a mixed
Lagrange-Hamilton formalism, separately accounting for the very short-periodic,
medium-periodic and long-periodic effects. The truncation, with respect to eccen-

- tricity, to degree 1 is justified by the fact that ¢ must be small to avoid hard landing,

while the inclination functions have to be

handled in full generality. The two main

problems are the slow convergence with respect to the degree and order of the spher-
ical harmonics expansion of the gravity field of the central body, and the presence
-of second order effects. An application of the theory to the mission analysis of a low
polar lunar orbiter, such as the proposed European mission MORO, is described.

1. INTRODUCTION

- The dynamics of low-altitude satellites present
a spectfic problem for several reasons. One of the
most important difficulties is due to the need to ac-
- curately predict the time variations of the eccentric-
ity, which must remain within certain limits to pre-
vent the crash of the satellite against the surface of
the central body. A powerful tool to study satellite

~orbits and monitor the variations of the orbital el-
ements 1s undoubtedly the numerical integration: it

gives precise and reliable data on the characteristics
and behaviour of an orbit, but is rather inefficient, in
particular for some specific purposes. For example,
due to the fact that the long-periodic variations of
the eccentricity are normally much larger than vari-
‘ations of short periods, to compute long time series

‘of minimum altitude for a multitude of initial condi-
tions and determine the safety zones, is very ineffi-

cient. To examine the entire phase space of orbital
elements by numerical integration, in order to locate
the “frozen orbit”, is almost impossible. Hence the

need for analytical solutions.

An orbit around some primary body is sub-
Ject to perturbation of its osculating two-body or-
bital elements, due to the harmonics of the grav-
ity field of the primary, to the differential attraction

from other massive bodies, to non gravitational per-
turbations, etc. The effects belong to three main

classes: very short-periodic ones (with periods of the
order of the satellite orbital period, i.e. a few hours,
or less), medium-periodic (with periods longer than
one orbital period of the satellite, but shorter than
one period of rotation of the primary), and long-

periodic; very short and medium periodic perturba-
tions will be collectively called short periodic. The

- theory takes a much simpler form if it is possible to

neglect the resonances between short and medium-
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periodic terms, as it is the case for a slowly rotating
central body, such as the Moon.

There are three types of elements involved: os-

culating, mean and proper. Osculating elements are
the instantaneous ones; they can be expressed as a

set of orbital elements (e.g. keplerian), by a time in-
dependent coordinate transformation from the state
vector (cartesian position and velocity). Mean ele-
ments are obtained from the osculating ones by re-
moving all the perturbations with short periods.
Proper elements are obtained by removing from the
mean elements the long-periodic perturbations.

Proper elements are solution of an integrable
problem, whose time evolution can be computed an-
alytically and with a simple formula. However, the
transformation of a non integrable problem into an
integrable one cannot be performed in an exact way,
but only by neglecting some higher degree and order
terms. Thus, the proper elements, which should be
constant in the integrable dynamics, are not exactly
constant when computed from a time series of state
vectors. Following a procedure well established for
asteroid proper elements, we use the standard devi-
ation of these proper elements with respect to their
long term average as a Imeasure of the accuracy of

the proper elements theory (see Milan and Knezevi¢,

1990, 1992, 1994).

We are developing fully analytical perturba-
tion theories to compute proper elements for low-
altitude satellites (Milani and Knezevi¢ 1995, Kneze-

vi¢ and Milani 1995), which can serve as an efficient
and handy tool for the preliminary study of their
orbits. We are using a mixed Lagrange-Hamilton
formalism, separately accounting for the very short-
periodic perturbations, the medium-periodic pertur-
bations, and the long-periodic ones. For a low satel-
lite, truncation with respect to the degree 1n eccen-
tricity is legitimate, while the inclination functions
have to be handled in full generality. The two main
problems are the slow convergence with respect to
the degree and order of the spherical harmonics ex-

pansion of the gravity field of the central body, and
~ the presence of second order effects (containing the
square of the gravitational potential coefficients).

- When the theory 1s applicable, the results are
accurate enough to analytically predict the orbit; the
computation being fully analytic and explicit, 1t 1s
much more efficient than any conceivable numerical
technique. The proper elements can also be used
to study problems such as orbit maintenance and
optimum manoeuver cycles, with significant practical
implications.
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o THE PERTURBING FUNCTION AND
THE CHOICE OF THE TRUNCATIONS

The potential of the gravity field of a non-
spherical body (primary) is given In terms of the de-
velopment into spherical harmonics (Kaula 1966):

U = + K
r
R—GM+W Ru)' s~ p C A
=— ; — mzz: im (@) [Cim cos mA+
Sim sin mA}

Here M and Ras are mass and equatorial radius of
the primary, r is the distance from its centre, G 1s
the gravitational constant, A and ¢ are longitude and
latitude with respect to some reference system body-
fixed with the primary, Py, is the Legendre assocl-
ated polynomial, and Cim, Sim are cosine and sine
coefficients of spherical harmonic potential terms, re-
spectively.

Since the | = 1 terms are removed by transla-
tion of the origin of the reference system to the cen-
tre of mass of the primary, the perturbing function
R contains only the terms of degree I > 2. The per-
turbing function can be expressed as a function of

the usual keplerian orbital elements (a,e, I,Q,w,¥)
(semimajor axis, eccentricity, inclination to the lu-

nar equator, longitude of node, argument of perise-
lenium, mean anomaly), and expanded as follows:

<+ 00
Y Gipg(€)Simpg(w, 4,52, 0)
g=-—00

Wimpg = (1 = 2p)w + (I = 2p + @) + m(Q — )

where @ is the phase of the rotation of the primary,
namely the angle between some body fixed direc-

tion along the equator and some inertial direction
along the equator. The inclination functions Fimp

and the eccentricity functions Gipq can be exphcitly
computed.
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We can now define very short-periodic terms
In R as those with {—-2p+q # 0 (i.e., those containing
the mean anomaly £); medium period terms are those
with ! — 2p + ¢ = 0 but m # 0 (i.e. those containing
m#); long-period terms have both | —-2p+ ¢ = 0 and
m = 0, so that:

"R=R+R+R

 where R contains only the long-period terms, R only

the medium-period terms, R only the very short-
period ones. The mean elements are, consequently,
such that their equations of motion contain only the

derivatives of R. _
The algorithm contains two stages: first the

short-periodic perturbations (containing the deriva-

tives of R + R) are removed, second we truncate R

to obtain an integrable system, which we can solve
1n closed form. Both stages will involve neglecting
‘some “terms”; the approximation will be consistent
iIf the neglected terms have smaller effects than those
Included 1n the theory; the accuracy is controlled by
how small they are. This choice must be done in a
different way for each particular case. As an exam-
ple, we are discussing here a consistent theory for a

- low lunar polar orbiter.
- The first approximation is the truncation of

the perturbing potential R as a function of the or-
bital elements. For a lunar orbiter, the eccentricity
e can not be large (to avoid hard landing), while the
inclination I can be large (and indeed we are inter-

ested 1n polar orbits, I =~ 90°). Hence, we truncate
~all the perturbations to degree 1 in e; this requires
the expansion of the perturbing function to degree
2 1n e, since some perturbations contain derivatives
such as JR/0e. We also perform some truncation
which takes into account that the orbit is nearly po-
lar, that 1s cos I is small.

A second truncation is with respect to the de-
gree | in the spherical harmonics expansion. This is
justified by the fact that the harmonic coefficients
Cim, Sim are decreasing with [, roughly proportion-
ally to 1/1%, according to the well known Kaula’s rule.
Our theory has no a priori upper limit [, but some
limitation has to be chosen to control the computa-
tional cost, and also to avoid numerical instabilities.
Moreover the actual values of the high degree and or-
der harmonic coefficients are highly uncertain, and
there 1s no point in doing very long computations
based on unreliable input data.

_ The third truncation is intrinsic to any per-
turbation theory, and is a truncation to some or-

der 1n the small parameters (harmonic coefficients)

appearing In the perturbations. For the short- pe-
riod perturbations, a first order theory is accurate

enough. For the long-period perturbations, if the ac-

curacy required 1s very high and the time span is
very long, some terms belonging to the second or-
der in the small parameters should be added. The
current version of our theory does not include these

second order terms, also because the uncertainty of
the harmonic coefficients of gravity field of the Moon
results in a larger error in the solution.

After all these truncations, the short-period
perturbations can be described by a trigonometric
series which has many terms but is easy to handle
with a computer program. The long-period pertur-
bations are described, in this approximation, by a
system of linear differential equations with constant
coeflicients, with an elementary solution. The equi-
librium point of the long-periodic equations corre-
sponds to the so called “frozen orbit”, which has no
long-period perturbations in eccentricity and inclina-
tion: the 1deal orbit for a long-lived spacecraft not
needing any orbit control.

3. LIMITATIONS OF THE CURRENT
THEORY

This theory uses some assumptions and per-
forms some truncations and simplifications with re-
spect to a complete problem. The choices we have
made correspond to the requirements of the prelim-
inary mission analysis of a low lunar polar orbiter.
However, these assumptions and simplifications oug-
ht to be explicitly stated, in order to be able to re-
move them if the need arises for a theory with higher

accuracy and/or more general applicability.
1. Second order effects. We have used a semiana-
lytical theory (that is, numerical integration of

the equations of motion resulting from the an-

alytical expansions) to discriminate the impact

of the omitted second order effects. The effect
can grow up to 0.001 in eccentricity after ~ 1 yr.

This source of error was considered unimportant
at this stage of development of mission analysis
tools, because the uncertainty in the lunar poten-
tial results in a much larger uncertainty in the
long term behaviour. However, the inclusion of
the main second order long-periodic effects is cer-
tainly a worthwhile upgrade of our theory, which
would become necessary when a better model of
the lunar gravity field will be available.

2. Effects not included in the current version. Per-

turbations by the Earth and the Sun are not ac-
counted for; a theory could be developed for these,

as soon as the need arises. Nor does the current
theory take into account the effects of radiation

pressure, which can be relevant when the lunar
satellite undergoes eclipses (Milani et al. 1987):
the change in proper semimajor axis can accumu-
late up to & 50 m.

3. The current version of our theory is not suitable

for the computation of the perturbations due to
very high harmonics, e.g. | > 40. To compute
the perturbations up to such a high ! would not
be very useful now, given the present state of the
art of the lunar potential models, in which the
harmonics of such a high degree mostly reflect the
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- a priori constraints used in the collocation process.
However, when a reliable potential model will be
available, it will become necessary to ensure suf-
ficient performance and numerical stability even
for high I. Numerical instability problems arise

because the coefficients of the monomials in sin [
in Fi,, grow very fast with [; e.g. these coefli-

cients become larger than the inverse of the ma-
chine error for | ~ 50. The resulting numerical
instability could be avoided by expanding Fimp 1n
a neighbourhood of I = 90°.

4. The precession of the lunar pole results in a drift
of the inclination in the true of date system (that

is, with respect to the current lunar pole). After
a few years, the inclination appearing in the coel-
ficients Fimp(I) becomes noticeably different from
the one in the true of epoch system we are using,

and this results in a degradation of the solutions,
" because of a less accurate removal of medium pe-

riodic perturbations (mostly m = 1). This could

be improved, if the need arises to cover a longer
time span.

4. ACCURACY OF THE RESULTS

‘We performed two kinds of tests to check whe-
ther the results which we achieved are good enough
for the purpose of the preliminary study of the satel-
lite orbit (mission analysis). First, we computed the
proper elements for a time series of state vectors of
a lunar orbiter, and, using the well-known testing
scheme developed for asteroids (Milani and Knezevic
1990), we estimated the root mean square deviation
of the proper values from their averages (proper el-
_ements being by definition constants in time, these
deviations represent an indirect measure of the ac-
curacy of the results and check of the validity of the

theory itself). For integrations made by means of the
software system USOC (G. Lecohier, private commu-
nication), with the gravity field model by Lemoine

et al. (1994), over a time span of 275 days and ac-

" counting only for the perturbations due to harmonics
of the gravity field of the Moon, we found the r.m.s.
in semimajor axis, eccentricity and inclination to be
~ 13m, < 0.001 and < 0.001 rad, respectively, which
" is more than sufficient for the stated purpose. Simi-
lar results were obtained with integrations made by

means of the GEODYNE software (R. Flobergha-
gen, private communication) and with gravity field
by Konopliv et al. (1993).

The second test was even more demanding: we

have computed analytically a solution for the same
time span of the numerical test. What we did 1n

fact (see Figure 1.) was to compute the proper ele-

ments for the initial instant of the numerical integra-
tion, propagate them analytically for the same span
of time covered numerically, and recompute the os-
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culating values for these instants of time for which
the values are sampled in the numerical integration.
Then we computed the difference between the ana-
lytical and the numerical solutions. In this case we

found that for about 6 months (more than enough
with respect to typical duration of a lunar mission)
the theory provides solution at the 0.001 level of ac-
curacy in eccentricity, which is entirely satistactory
(see Figure 2.). We can conclude that, although
the analytical theory is not meant to provide pre-
cise ephemerides of the satellite, but only to study
the qualitative long term behaviour of the orbit (e.g.

for manoeuver planning purposes), this test shows
its capability to actually predict the orbit in a qual-
itatively correct way and even quantitatively with a
reasonable accuracy, again more than 1t 1s presum-
ably needed for the preliminary mission analysis. Al-
though this is not of an utmost importance in this
context, let us also mention that the analytical prop-
agation by means of proper elements is at least an

order of magnitude faster than the numerical inte-
gration.

5. MISSION ANALYSIS: AN EXAMPLE

The described theory was originally developed
for a practical application, namely the study of the

proposed European lunar mission MORO (with lau-

nch opportunity in 2002-2003). There are three pro-

blems to be solved to design and perform such a mis-
sion:

1. The fuel consumption has to be kept as low as
possible to reduce the total spacecraft mass. This
requires the study of an efficient manoeuver cy-
cle, taking into account the medium and especially
long period perturbations.

2. The eccentricity of the orbit has to be kept very

low to maintain adequate coverage by the camera:
if the mean altitude is 100 Km, an e of 0.02 imphes
a change of image scale by more than a factor 2

(and an e only slightly larger than 0.05 results in
hard landing).

3. MORO is supposed to release a sub-satellite to

perform Satellite To Satellite tracking (also to me-

asure the gravity field on the far side of the Moon).
The subsat has no orbit control system, and we

need to know if and when it would crash on the
surface.

Although numerical tests can give some an-
swer to these problems, a systematic exploration of
the phase space can be done efficiently only with a
fully analytical theory. In Figure 3. we present a pos-

sible solution for the choice of orbits and their main-
tenance, with a manoeuver cycle of about 60 days

for MORO and the subsat placed in the the equilib-
rium point of the dynamics of the mean elements,
the frozen orbit. The solution has been computed
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INITIAL TIME

OSCULATING

- ANALYTICAL ORBIT INTEGRATION USING A PROPER ELEMENT THEORY

OUTPUT TIME

OSCULATING
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| REMOVE
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Proper actions = const

VW
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LONG PERIODS

N O\
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RESTORE

PROPER

Proper angles = linear function of time

Fig. 1. A schematic representation of the analytical orbit integration by means of a proper element theory.

using the Konopliv et al. (1993) lunar gravity field,
truncated to degree and order 20. The manoeuver

strategy had the purpose of keeping the main space-

~craft within e < 0.015, with as little consumption
‘of fuel as possible and the duration of the mission
as long as possible, while the sub-satellite’s mean
elements were to change very little (in the neigh-
‘bourhood of the frozen orbit). The outer circle rep-

resents the “safe periselenium altitude” line, which
corresponds to a minimum periselenium altitude of
20 K'm, taking into account the lunar topography

(up to ~ 10 K'm), as well as the inaccuracy of the
theory (about 2 K'm). As one can easily infer from

the Figure, conditions 2. and 3. are amply satisfied
by the particular orbits, and for a span of time more
than enough for the assumed duration of the propo-
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~ Fig. 2. The difference —in one of the eccentricity related variables, namely h = e sin w— between the numer-
ical integration and the purely analytical propagation. Apart from the very short periodic perturbation, the
" main trend is due both to truncation in the spherical harmonics expansion and to second order efiects.
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Fig. 3. A possible solution for the mission analysis of the MORO mission, with the main satellite at a low
eccentricity and the sub-satellite mean elements close to the frozen orbit. '
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OpuzuHaIHU HAYYHU pao

- Y pany je npuKa3aHa HOBa, TMCTO aHAJIMTHAIKA
Teopyja ropeMehaja KpeTalma 32 HHUCKE CaTC/IUTE, Ha-
MeHcHa IpeIMMUHApDHOM M3ydaBalby IBMXOBMX Ily-
rama. TeopHja KOPHUCTH MemoBUT JlarpaHk-XaMuil-
TOHOB (JOPMAJIM3aM M 3aCeOHO TPETUpPA €QCKTE BPJIO
KpaTKMX, CPEMI-UX M Oyrux mepuona. Kako €KCLEH-
TPUYIHOCT ITyTamke Mopa GUTH MaJia aa Ou ce U30€crao
" yoap O IOBpIIVMHY ILICHTPAJIHOI TCJIA, TeopHja je ITpBOr
CTelleHa y OJHOCY Ha MCTY, IOK je Haru0 IyTamCKe
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paBHM Ipou3BoJbaH. IlBa rilaBHa Irpobjiema cy CIopa
KOHBepreHinja cepHMX XapMOHMKA I'PaBUTAIIMOHOr
MoJba LLEHTPAJIHOr TeJla ca CTEIICHOM M peIoM XapMo-
HUKa U TIOCTOjale HeoOpadyHATHX edeKkaTa Ipyror
pena. OnucaHa je IpUMEHa OBe TEOpHjE Y CBPXY aHaJI-
M3e ONITUMAJIHE IyTalke U OylieTa ropvBa HMCKOT, IIO0-
napHor MecedeBor caTejluTa, KakaB je HaIlp. CaTeNINT
MOPO, nipensubeH y OKBUpY jeOHE JIyHapHe MHCHJC
rpensioxeHe EBPOICKOj CBEMMPCKOj areHIUJH.



