Bull. Astron. Belgrade № 156 (1997), 173 – 178

TABLES OF THE ELECTRON IMPACT BROADENING PARAMETERS: Mn II, Mn III, Ga III, Ge III and Ge IV LINES

L. Č. Popović and M. S. Dimitrijević

Astronomical Observatory, Volgina 7, 11000 Belgrade, Yugoslavia

(Received: September 13, 1997)

SUMMARY: In this paper the Tables of the electron - impact line widths and shifts for 16 Mn II, 3 Mn III, 10 Ga III, 8 Ge III and 14 Ge IV multiplets considered within a modified semiempirical approach are given. A Table with electron-, proton-, and He III-impact line widths and shifts for 3 Ge IV multiplets calculated by using semiclassical approach is given as well.

1. INTRODUCTION

Development of spectral space observations, as e.g. with Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST), provides good quality stellar spectra. Consequently, the number of spectral lines of astrophysical interest rapidly increases.

The lines of Mn II, Mn III, Ga III, Ge III and Ge IV are present in spectra of hot star atmospheres, where Stark broadening mechanism is main pressure broadening mechanism. The spectral lines of Mn II and Mn III are observed in atmosphere of hot stars (see e.g. Heacox 1979, Cowley 1980, Smith & Dworetsky 1993). It is well known that manganese is overabundant in atmospheres of Hg-Mn stars (see e.g. Heacox 1979, Cowley 1980, Smith & Dworetsky 1993 etc.) The analysis of Ga II and Ga III lines in high resolution IUE spectra observed for 53 B and A stars by Takada-Hidai et al. (1986) shows that gallium is overabundant in the magnetic Si and Si Cr Eu stars, in the non-magnetic Hg-Mn stars and in the He- weak PGa stars (for gallium overabundance analyses see also e.g. Heacox 1979 and Smith 1995). Also, the spectral lines of germanium (Ge II, Ge III) are present in hot star spectra, as e.g. in β Ori (Selvelli et al. 1977) spectrum. They may be additionally of interest for stellar interior physics since germanium is commonly associated with slow-neutron capture nucleosynthesis (Leckrone et al. 1993).

In Tables 1 – 3 the electron-impact broadening parameters for Mn II, Mn III, Ga III, Ge III and Ge IV spectral line, calculated within the modified semiempirical approach (Dimitrijević & Konjević 1980 and for ions with complex spectra see also Popović & Dimitrijević 1996) are given. Morover, the electron-, proton-, and He III-impact line widths and shifts for 3 Ge IV lines calculated within the semiclassical perturbation formalism (Sahal-Bréchot 1969ab) are given (Table 4).

2. RESULTS AND DISCUSSION

The analysis of obtained results, details of calculations and the comparison with other theoretical will be published in Popović and Dimitrijević (1997).

Here, we present only tables of Stark broadening parameters for astrophysical and laboratory plasma diagnostic purposes. These Tables in electronic form can be accessed by ftp at

cdsarc.u-strasb.fr
or on www at
http://cdsweb.u-strasbg.fr/abstract.html,

where they are related to Popović and Dimitrijević 1997.

Our results for Mn II, Mn III, Ga III Ge III and Ge IV lines/multiplets for a perturber density 10^{23} m⁻³ as a function of temperature (Popović and Dimitrijević 1997) are presented in Tables 1 – 4.

Transition

W (nm)

d (nm)

T(K)

Table 1. Stark full width (FWHM) and shift for Mn II and Mn III multiplets as a function of temperatur modifie sity is multiple

perature. The cal modified semiemp	lculation w pirical appr	as performoach. The e	ed using the electron den-	Mr. II	5000	6225 02	504E 02
sity is 10^{23} m ⁻³ . multiplet is denot	The avara ed by $\overline{\lambda}$.	aged wavele	ength of the	$a^5S - w^5P^0$	10000. 20000	.022E-02 .433E-02 .318E-02	404E-03 261E-03
indicipier is delier	ou oj 70			$\overline{\mathbf{x}}$	30000.	.284E-02	188E-03
Transition	T (K)	W (nm)	d (nm)	$\lambda = 129.11 \text{ nm}$	40000. 50000.	.271E-02 .266E-02	628E-04 363E-04
Mn II	5000.	.848E-02	183E-02	Mn II	5000.	.362E-01	.194E-01
$a^7S - z^7P^0$	10000. 20000. 30000	.591E-02 .409E-02 330E-02	130E-02 932E-03 - 771E-03	$z^5 P^0 - e^5 S$	20000. 30000.	.183E-01 .161E-01	.1140E-01 .118E-01 .114E-01
$\overline{\lambda} = 258.97 \text{ nm}$	40000. 50000.	.285E-02 .257E-02	674E-03 609E-03	$\lambda = 303.69 \text{ nm}$	40000. 50000.	.153E-01 .149E-01	.112E-01 .111E-01
Mn II	5000.	.528E-02	.208E-03	Mn II	5000.	.170E-01 118E-01	.106E-01 794E-02
$a^7S - x^7P^0$	20000. 20000. 30000	.368E-02 .267E-02 238E-02	.181E-03 .182E-03 207E-03	$z^5 P^0 - e^5 D$	20000. 30000.	.835E-02 .726E-02	.627E-02 .582E-02
$\overline{\lambda} = 116.30 \text{ nm}$	40000. 50000.	.226E-02 .221E-02	.291E-03 .309E-03	$\overline{\lambda} = 258.41 \text{ nm}$	40000. 50000.	.687E-02 .673E-02	.590E-02 .617E-02
Mn II	5000.	.287E-01	.159E-01	Mn II	5000.	.182E-01	.122E-01 .974E-02
$z^7 P^0 - e^7 S$	20000. 30000.	.199E-01 .144E-01 .125E-01	.950E-02 .906E-02	$z^5P^0 - f^5D$	20000. 30000.	.112E-01 .111E-01	.950E-02 .946E-02
$\overline{\lambda} = 278.19 \text{ nm}$	40000. 50000.	.118E-01 .115E-01	.888E-02 .886E-02	$\overline{\lambda} = 174.70 \text{ nm}$	40000. 50000.	.114E-01 .118E-01	.948E-02 .928E-02
Mn II	5000.	.132E-01	.842E-02	Mn II	5000. 10000.	$.565 \\ .394$	199 148
$z^7 P^0 - e^7 D$	20000. 30000.	.641E-02 .550E-02	.488E-02 .446E-02	$e^{5}S - w^{5}P^{0}$	20000. 30000.	.290 .263	118 112
$\overline{\lambda} = 244.24 \text{ nm}$	40000. 50000.	.517E-02 .504E-02	.440E-02 .461E-02	$\lambda = 947.97 \text{ nm}$	40000. 50000.	.254 .252	104 103
Mn II	5000.	.156E-01 112E-01	.846E-02 675E-02	Mn II	5000. 10000.	$2.15 \\ 1.49$	748 552
$z^7 P^0 - w^7 D$	20000. 30000.	.928E-02 .906E-02	.657E-02 .664E-02	$e^7D - w^5P^0$	20000. 30000.	1.09 .990	426 387
$\overline{\lambda} = 163.17 \text{ nm}$	40000. 50000.	.927E-02 .955E-02	.675E-02 .663E-02	$\lambda = 2092.61 \text{ nm}$	40000. 50000.	$.962 \\ .959$	365 379
Mn II	5000. 10000	.489 340	129 - 954E-01	Mn II	5000.	.428	.209
$e^7S - x^7P^0$	20000. 30000.	.248 .222	750E-01 708E-01	$w^5P^0 - f^5D$	20000. 30000.	.254 .249	.161 .159
$\overline{\lambda} = 875.16 \text{ nm}$	40000. 50000.	.213 .210	652E-01 645E-01	$\overline{\lambda} = 726.51 \text{ nm}$	40000. 50000.	.256 .264	$.158 \\ .153$
Mn II	5000.	$1.18 \\ 820$	250 - 182	Mn III	5000. 10000.	.455E-02 .319E-02	785E-03 561E-03
$e^7D - x^7P^0$	20000. 30000.	.596 .533	138 121	$a^6D - z^6F^0$	50000. 100000.	.138E-02 .101E-02	253E-03 175E-03
$\overline{\lambda} = 1555.25 \text{ nm}$	40000. 50000.	.514 .510	107 114	$\overline{\lambda} = 208.39 \text{ nm}$	250000. 500000.	.832E-03 .829E-03	869E-04 521E-04
Mn II	5000.	1.04	.122E-01	Mn III	5000.	.440E-02	779E-03
$x^7 P^0 - f^7 D$	20000. 30000	.627 607	.638E-01 787E-01	$a^6D - z^6P^0$	50000. 100000.	.133E-02 .973E-03	251E-03 173E-03
$\overline{\lambda} = 1122.10 \text{ nm}$	40000. 50000.	.598	.729E-01 .707E-01	$\overline{\lambda} = 204.12 \text{ nm}$	250000. 500000.	.804E-03 .801E-03	861E-04 518E-04
Mn II	5000.	.122E-01	252E-02	Mn III	5000.	.416E-02	592E-03
$a^5S - z^5P^0$	10000. 20000. 20000	.851E-02 .589E-02	179E-02 129E-02	$a^6D - z^6D^0$	10000. 50000. 100000	.292E-02 .126E-02	423E-03 189E-03
$\overline{\lambda} = 294.35 \text{ nm}$	40000. 50000.	.476E-02 .413E-02 .374E-02	107E-02 940E-03 858E-03	$\overline{\lambda} = 194.75 \text{ nm}$	250000. 500000.	.921E-03 .761E-03 .758E-03	127E-03 553E-04 272E-04

Transition	Т (К)	W (nm)	d (nm)	Transition	Т (К)	W (nm)
Ga III	5000.	.822E-03	565E-04	Ge III	5000.	.441E-02
	10000.	.573E-03	390E-04		10000.	.308E-02
$4s^2S - 5p^2P^0$	50000.	.268E-03	982E-05	$4p^1P^0 - 5s^1S$	50000.	.142E-02
_	100000.	.231E-03	.877E-05	_	100000.	.118E-02
$\overline{\lambda} = 62.06 \text{ nm}$	250000.	.227E-03	.205E-04	$\overline{\lambda}$ = 139.55 nm	250000.	.110E-02
	500000.	.214E-03	.169E-04		500000.	.104E-02
Ga III	5000.	.455E-02	.237E-02	Ge III	5000.	.187E-02
	10000.	.318E-02	.171E-02	1 0 1	10000.	.130E-02
$4p^2P^0 - 5s^2S$	50000.	.148E-02	.842E-03	$4p^{1}P^{0} - 4d^{1}D$	50000.	.580E-03
-	100000.	.123E-02	.687E-03	-	100000.	.488E-03
$\lambda = 134.35 \; \mathrm{nm}$	250000.	.114E-02	.542E-03	λ = 115.92 nm	250000.	.470E-03
	500000.	.108E-02	.427E-03		500000.	.463E-03
Ga III	5000.	.208E-02	.125E-02	Ge III	5000.	.956E-01
(200) (120)	10000.	.145E-02	.905E-03		10000.	.668E-01
$4p^2P^0 - 4d^2D$	50000.	.635E-03	.455E-03	$5s^{1}S - 5p^{1}P^{0}$	50000.	.311E-01
100 47	100000.	.517E-03	.394E-03	.	100000.	.262E-01
$\lambda = 128.47$ nm	250000.	.523E-03	.358E-03	$\lambda = 481.57 \text{ nm}$	250000.	.247E-01
	500000.	.541E-03	.294E-03		500000.	.228E-01
Ga III	5000.	.220E-02	.125E-02	Ge III	5000.	.859
$4m^2 D^0 = 5d^2 D$	10000.	.153E-02	.920E-03	$4 d1 D = 5m^1 D^0$	10000.	.599
$4p \ r^{*} - 5a \ D$	50000. 100000	.821E-03	.574E-03	$4u D = 5p P^{-1}$	50000. 100000	.270
$\overline{\lambda} = 81.36$ mm	250000	.803E-03	.525E-05	$\overline{)}$ = 1622.08 mm	250000	.234
$\lambda = 01.30 \text{ mm}$	200000.	.794E-05 735E-03	.410E-05 317E 03	$\lambda = 1025.98$ him	200000.	.231
	500000.	.155E-05	.51712-05		500000.	.213
Ga III	5000.	.106	318E-01	Ge III	5000.	.229E-02
$r_{-2} q = r_{-2} p_0$	10000.	.742E-01	229E-01	43D0 F-3C	10000.	.160E-02
$5s^2S - 5p^2P^2$	50000.	.348E-01	108E-01	$4p^{\circ}P^{\circ} - 5s^{\circ}S$	50000.	.728E-03
$\overline{1} = 400.73$ mm	250000	.290E-01	790E-02	$\overline{)}$ = 105.00 mm	250000	.090E-05
$\lambda = 490.75 \text{ mm}$	250000. 500000.	.280E-01 .259E-01	338E-02 438E-02	$\lambda = 105.00 \text{ mm}$	250000. 500000.	.552E-05 .519E-03
Co III	5000	100	267F 01	Colli	5000	840F 03
Oa III	10000	761E-01	207E-01	Ge III	10000	590E-03
$4d^2D - 5n^2P^0$	50000	351E-01	- 893E-02	$4n^2P^0 - 4d^2D$	50000	255E-03
100 D 0p 1	100000.	.299E-01	647E-02		100000.	.208E-03
$\overline{\lambda} = 589.27 \text{ nm}$	250000.	.294E-01	515E-02	$\overline{\lambda} = 100.38 \text{ nm}$	250000.	.217E-03
	500000.	.279E-01	430E-02		500000.	.232E-03
Ga III	5000.	.208E-01	404E-02	Ge III	5000.	.698E-01
	10000.	.144E-01	277E-02		10000.	.488E-01
$4d^2D - 4f^2F^0$	50000.	.750E-02	455E-03	$5s^3S - 5p^3P^0$	50000.	.224E-01
_	100000.	.738E-02	.323E-03		100000.	.186E-01
$\lambda = 242.24 \; \mathrm{nm}$	250000.	.772E-02	.495E-03	λ = 421.96 nm	250000.	.175E-01
	500000.	.753E-02	.346E-03		500000.	.162E-01
Ga III	5000.	.166E-01	111E-02	Ge III	5000.	.720E-01
	10000.	.117E-01	467E-03		10000.	.502E-01
$4d^2D - 5f^2F^0$	50000.	.849E-02	.154E-02	$4d^2D - 5p^2P^0$	50000.	.227E-01
150.04	100000.	.848E-02	.162E-02	$\overline{\mathbf{x}}$	100000.	.190E-01
$\lambda = 156.84 \text{ nm}$	250000.	.804E-02 627E-02	.107E-02 657E-03	$\lambda = 517.65 \text{ nm}$	250000.	.187E-01 179E-01
	000000.	.02112-02	.0011-00		000000.	.11012-01
Ga III	5000.	.614E-01	.202E-01	Ge IV	5000.	.844E-03
$r_{-2} D_{0} r_{-2} D_{2}$	10000.	.427E-01	.149E-01	$4 - 2 D^0 = 7 - 12 D$	10000.	.590E-03
$\partial p P^{-1} - \partial D^{-}D$	50000.	.222E-01	.963E-02	$4p r^{-} - 3a^{-}D$	50000.	.270E-03
$\overline{)} = 255.96$	100000.	.214E-01	.004E-U2	$\overline{)}$ = 54.94	100000.	.220E-03
$\lambda = 555.80 \text{ nm}$	200000. 500000	.210E-01	.097E-02 538F 02	A = 54.24 nm	200000. 500000	.214E-03 200下 02
	500000.	.1996-01	.00011-02	Ge IV	500000.	.200E-03 134E-09
Ga III	5000.	.253	453E-01	0017	10000	.938E-02
	10000.	.177	295E-01	$4p^2P^0 - 6d^2D$	50000.	.501E-03
$5d^2D - 5f^2F^0$	50000.	.123	.100E-02	1 - · ·	100000.	.466E-03
-	100000.	.125	.299E-02	$\overline{\lambda}$ = 45.46 nm	250000.	.426E-03
$\lambda = 535.12 \text{ nm}$	250000.	.119	.720E-03		500000.	.373E-03
	500000	.955E-01	971E-03			

Table 2. Same as in Table 1, but for Ga III multiplets.

Table 3. Same as in Table 1, but for Ge III and Ge IV multiplets.

d (nm) .237E-02 .171E-02.836E-03 .679E-03 .537E-03.427E-03 .149E-02.107E-02.535E-03 $.468\mathrm{E}\text{-}03$.403E-03 .329E-03-.236E-01-.170E-01 -.799E-02 -.577E-02-.399E-02 -.310E-02-.239 -.172-.825E-01-.657E-01 -.518E-01 -.421E-01.118E-02 $.850\mathrm{E}\text{-}03$.412E-03 .333E-03.270E-03 .214E-03.614E-03.443E-03 .224E-03 .187E-03 .178E-03.150E-03-.207E-01 -.149E-01 -.689E-02-.496E-02 -.351E-02-.276E-02 -.190E-01 -.136E-01-.632E-02 -.433E-02 -.345E-02 -.293E-02.389E-03 .281E-03 .142E-03 .123E-03.101E-03 .807E-04.565E-03 .413E-03.243E-03 .209E-03 .160E-03.121E-03

Transition	T (K)	W (nm)	d (nm)	Transition	T (K)	W (nm)	d (nm)
Ge IV $4d^2D - 5p^2P^0$ $\overline{\lambda}$ = 275.26 nm	5000. 10000. 50000. 100000. 250000. 500000.	.157E-01 .110E-01 .484E-02 .376E-02 .341E-02 .337E-02	250E-02 178E-02 792E-03 528E-03 304E-03 261E-03	Ge IV $5p^2P^0 - 6d^2D$ $\overline{\lambda}$ = 131.47 nm	5000. 10000. 50000. 100000. 250000. 500000.	.130E-01 .912E-02 .476E-02 .437E-02 .403E-02 .357E-02	.438E-02 .320E-02 .190E-02 .163E-02 .122E-02 .910E-03
Ge IV $4d^2D - 4f^2F^0$ $\overline{\lambda}$ = 149.83 nm	5000. 10000. 50000. 100000. 250000. 500000.	.521E-02 .363E-02 .162E-02 .134E-02 .133E-02 .131E-02	135E-02 949E-03 370E-03 145E-03 .290E-04 .457E-04	Ge IV $4f^2F^0 - 5d^2D$ $\overline{\lambda}$ = 996.63 nm	5000. 10000. 50000. 100000. 250000. 500000.	.416 .290 .133 .114 .114 .109	.941E-01 .674E-01 .325E-01 .261E-01 .198E-01 .156E-01
Ge IV $4d^2D - 6p^2P^0$ $\overline{\lambda}$ = 108.03 nm	5000. 10000. 50000. 100000. 250000. 500000.	.539E-02 .376E-02 .189E-02 .169E-02 .156E-02 .142E-02	112E-03 672E-04 .310E-04 .971E-04 .102E-03 .733E-04	Ge IV $4f^2F^0 - 6d^2D$ $\overline{\lambda}$ = 219.06 nm	5000. 10000. 50000. 100000. 250000. 500000.	.375E-01 .262E-01 .136E-01 .127E-01 .119E-01 .107E-01	.113E-01 .827E-02 .490E-02 .411E-02 .301E-02 .225E-02
Ge IV $5s^2S - 5p^2P^0$ $\overline{\lambda}$ = 359.48 nm	5000. 10000. 50000. 100000. 250000. 500000.	.396E-01 .277E-01 .124E-01 .981E-02 .884E-02 .828E-02	101E-01 722E-02 320E-02 226E-02 139E-02 109E-02	Ge IV $5d^2D - 5f^2F^0$ $\overline{\lambda}=$ 332.9 nm	5000. 10000. 50000. 100000. 250000. 500000.	.723E-01 .514E-01 .272E-01 .253E-01 .244E-01 .202E-01	163E-01 112E-01 259E-02 760E-03 212E-03 201E-03
Ge IV $5s^2S - 6p^2P^0$ $\overline{\lambda}$ = 118.97 nm	5000. 10000. 50000. 100000. 250000. 500000.	.793E-02 .554E-02 .274E-02 .242E-02 .223E-02 .200E-02	774E-03 541E-03 166E-03 310E-04 .280E-04 .188E-04	Ge IV $6p^2P^0 - 6d^2D$ $\overline{\lambda}$ = 504.37 nm	5000. 10000. 50000. 100000. 250000. 500000.	.257 .179 .950E-01 .886E-01 .819E-01 .721E-01	.585E-01 .427E-01 .246E-01 .202E-01 .147E-01 .109E-01
Ge IV $5p^2P^0 - 5d^2D$ $\overline{\lambda}$ = 247.24 nm	5000. 10000. 50000. 100000. 250000. 500000.	.240E-01 .168E-01 .763E-02 .634E-02 .609E-02 .574E-02	.685E-02 .495E-02 .248E-02 .215E-02 .168E-02 .131E-02	Ge IV $6s^2S - 6p^2P^0$ $\overline{\lambda}$ = 786.57 nm	5000. 10000. 50000. 100000. 250000. 500000.	.550 .384 .199 .182 .165 .142	161 115 516E-01 375E-01 269E-01 201E-01

Table 4. The electron-, proton-, and He III- impact broadening, full widths (FWHM) and shifts, for 3 Ge IV multiplets as a function of temperature and perturber density. The calculation was performed using the semiclasical perturbation approach. The averaged wavelength of the multiplet is denoted by $\overline{\lambda}$.

PERTURBER I	DENSITY =	1.E + 23m - 3					
PERTURBERS ARE:		ELECTRO	DNS	PROTONS	5	He III	
Transition	T(K)	W (nm)	d (nm)	W (nm)	d (nm)	W (nm)	d (nm)
Ge IV $4s^2S - 4p^2P^0$	5000	.273E-02	.592E-03	.869E-06	282E-06	.137E-04	336E-06
$\overline{\lambda}$ =120.23 nm C= .12E+21	10000 50000	.174E-02 .786E-03	.788E-04 734E-05	.273E-05 .220E-04	816E-06 476E-05	.514E-05 .435E-04	135E-05 935E-05
	$ \begin{array}{r} 100000 \\ 250000 \\ 500000 \\ \end{array} $.567E-03 .392E-03 .315E-03	876E-05 113E-04 991E-05	.367E-04 .539E-04 .614E-04	858E-05 145E-04 188E-04	.728E-04 .108E-03 .122E-03	171E-04 291E-04 377E-04
Ge IV $4p^2P^0 - 5s^2S$	5000	.352E-02	.187E-03	.507E-06	.351E-05	.816E-06	.417E-05
$\overline{\lambda}$ = 86.14 nm C= .21E+20	$\begin{array}{c} 10000\\ 50000\\ 100000\\ 250000\\ 500000\end{array}$.207E-02 .832E-03 .617E-03 .452E-03 .373E-03	.185E-03 .789E-04 .833E-04 .817E-04 .749E-04	.202E-05 .295E-04 .504E-04 .784E-04 .994E-04	.101E-04 .426E-04 .592E-04 .762E-04 .908E-04	.386E-05 .588E-04 .101E-03 .157E-03 .198E-03	.166E-04 .833E-04 .118E-03 .153E-03 .183E-03
Ge IV $4p^2P^0-4d^2D$	5000	.319E-02	547E-03	.229E-05	.828E-06	.360E-05	.985E-06
$\overline{\lambda}$ =92.95 nm C= .31E+20	$ \begin{array}{r} 10000 \\ 50000 \\ 100000 \\ 250000 \\ 500000 \end{array} $.169E-02 .732E-03 .539E-03 .389E-03	821E-04 .242E-04 .211E-04 .275E-04	.707E-05 .416E-04 .600E-04 .759E-04	.239E-05 .127E-04 .197E-04 .288E-04	.133E-04 .825E-04 .119E-03 .152E-03	.395E-05 .249E-04 .393E-04 .579E-04

Ge IV $4s^2S - 4p^2P^0$	5000	.278E-01	.591E-02	.418E-05	816E-06	.205E-05	266E-06
$\overline{\lambda}$ =120.23 nm	10000	.174E-01	.105E-02	.233E-04	523E-05	.352E-04	578E-05
C = .12E + 22	50000	.786E-02	708E-04	.220E-03	460E-04	.432E-03	864E-04
	100000	.567E-02	814E-04	.366E-03	850E-04	.727E-03	166E-03
	250000	.392E-02	113E-03	.539E-03	145E-03	.108E-02	291E-03
	500000	.315E-02	991E-04	.614E-03	188E-03	.122E-02	377E-03
Ge IV $4p^2P^0 - 5s^2S$	5000	.352E-01	.180E-02	.266E-05	.101E-04	.155E-05	.329E-05
$\overline{\lambda}$ =86.14 nm	10000	207E-01	179E-02	181E-04	644E-04	294E-04	707E-04
C = .21E + 21	50000	.832E-02	.777E-03	.295E-03	.405E-03	.587E-03	.745E-03
	100000	.616E-02	.822E-03	.505E-03	.582E-03	.101E-02	.112E-02
	250000	.452E-02	.811E-03	.784E-03	.760E-03	.157E-02	.153E-02
	500000	.373E-02	.748E-03	.994E-03	.908E-03	.198E-02	.183E-02
$G = \pi t 4m^2 D^0 = 4 d^2 D$	F 000	2100 01	F 45 D 00	1100 04	04017 05		700 D 00
$\underline{\underline{Ge}} $ IV $4p^-P^* - 4a^-D$	5000	.319E-01	547E-02	.110E-04	.240E-05	.533E-05	.782E-06
λ =92.95 nm	10000	.168E-01	111E-02	.601E-04	.153E-04	.902E-04	.170E-04
C = .31E + 21	50000	.732E-02	.239E-03	.415E-03	.122E-03	.816E-03	.228E-03
	100000	.539E-02	.207E-03	.599E-03	.194E-03	.119E-02	.379E-03
	250000	.389E-02	.274E-03	.759E-03	.288E-03	.152E-02	.578E-03
	500000	.324E-02	.245E-03	.859E-03	.346E-03	.172E-02	.696E-03

PERTURBER DENSITY = 1.E+25m-3

Ge IV $4s^2S - 4p^2P^0$	5000						
$\overline{\lambda}$ =120.23 nm C= .12E+23	$\begin{array}{c} 10000 \ .175 \\ 50000 \\ 100000 \\ 250000 \\ 500000 \end{array}$.954E-02 .786E-01 .567E-01 .392E-01 .315E-01	.107E-03 601E-03 778E-03 110E-02 978E-03	139E-04 .217E-02 .365E-02 .539E-02 .614E-02	.437E-04 407E-03 804E-03 143E-02 187E-02	372E-05 .410E-02 .716E-02 .107E-01 .122E-01	686E-03 151E-02 280E-02 376E-02
Ge IV $4p^2P^0 - 5s^2S$ 5	5000						
$\overline{\lambda}$ =86.14 nm C=.21E+22	$\begin{array}{c} 1000 \\ 50000 \\ 100000 \\ 250000 \\ 500000 \end{array}$	*.207 .832E-01 .616E-01 .452E-01 .373E-01	*.156E-01 .704E-02 .772E-02 .775E-02 .734E-02	*.104E-03 .293E-02 .502E-02 .784E-02 .994E-02	*.167E-03 .340E-02 .526E-02 .739E-02 .904E-02	*.571E-04 *.572E-02 *.100E-01 *.157E-01 *.198E-01	*.378E-04 *.525E-02 *.921E-02 *.139E-01 *.182E-01
$\frac{\text{Ge IV } 4p^2 P^0 - 4d^2 D}{\sum}$	5000						
λ =92.95 nm C=.31E+22	1000 50000 100000 250000 500000	*.166 .732E-01 .539E-01 .389E-01 .324E-01	104E-01 .220E-02 .195E-02 .266E-02 .242E-02	*.270E-03 .406E-02 .596E-02 .759E-02 .859E-02	*.408E-04 .107E-02 .181E-02 .283E-02 .345E-02	*.973E-04 *.758E-02 *.116E-01 *.151E-01 *.172E-01	*.108E-04 *.176E-02 *.333E-02 *.544E-02 *.693E-02

PERTURBER DENSITY = 1.E+26m-3

Ge IV $4s^2S - 4p^2P^0$ $\overline{\lambda}=120.23 \text{ nm}$ C=.12E+24	5000 10000 50000 100000 250000 500000	.786 .567 .392 .315	405E-02 646E-02 103E-01 914E-02	.184E-01 .354E-01 .536E-01 .613E-01	273E-02 696E-02 136E-01 183E-01
Ge IV $4p^2P^0 - 5s^2S$ $\overline{\lambda}$ =86.14 nm C=.21E+23	5000 10000 50000 100000 250000 500000	* .832 .616 .452 .373	*.448E-01 .605E-01 .674E-01 .651E-01	*.266E-01 *.496E-01 *.785E-01 *.998E-01	*.174E-01 *.391E-01 *.643E-01 *.857E-01
Ge IV $4p^2P^0 - 4d^2D$ $\overline{\lambda}$ =92.95 nm C=.31E+23	5000 10000 50000 100000 250000 500000	* .732 .539 .389 .324	*.161E-01 .156E-01 .242E-01 .222E-01	*.320E-01 *.566E-01 *.750E-01 *.856E-01	*.673E-02 *.149E-01 *.261E-01 *.335E-01

L. Č. POPOVIĆ and M. S. DIMITRIJEVIĆ

Acknowledgements – This work is a part of the project "Astrometrical, Astrodynamical and Astrophysical Researches", supported by Ministry of Science and Technology of Serbia.

REFERENCES

- Cowley C. R., 1980, Publ. Astron. Soc. Pacific, **92**, 159.
- Dimitrijević, M.S., Konjević, N., 1980, J. Quant. Spectrosc. Radiat. Transfer **24**, 451.
- Heacox W. D., 1979, Astrophys. J. Suppl. Series, 41, 675.
- Leckrone, D.S., Wahlgren, G.M., Johansson, S.G., Adelman, S.J., 1993, in Peculiar versus Nor-

mal Phenomena in A-Type and Related Stars, eds. M.M. Dworetsky, F. Castelli, R. Faraggiana, ASP Conference Series 44, 42.

- Popović L. Č. and Dimitrijević M. S., 1996, Phys. Scr. 53, 325.
- Popović L. Č. and Dimitrijević M. S., 1997, Astron. Astrophys. Supp. Series, to be published
- Sahal-Bréchot, S., 1969a, Astron. Astrophys. 1, 91.
- Sahal-Bréchot, S., 1969b, Astron. Astrophys. 2, 322.
- Selvelli P. L., Crivellari L. and Stalio R.: 1977, Astron. Astrophys. Supp. Series, 27, 1.
- Smith K. C., 1995, Astron. Astrophys. 297, 237.
- Smith K. C. & Dworetsky M. M., 1993, Astron. Astrophys. 274, 335.
- Takada-Hidai M., Sadakane K. and Jugaku J., 1986, Astrophys. J. 304, 425.

ТАБЕЛЕ ПАРАМЕТАРА ЕЛЕКТРОНСКО-СУДАРНОГ ШИРЕЊА: Mn II, Mn III Ga III, Ge III И Ge IV ЛИНИЈА

Л. Ч. Поповић и М. С. Димитријевић

Астрономска опсерваторија, Волгина 7, 11000 Београд, Југославија

УДҚ 52–355.3

Претходно саопштење

У овом раду су дате Табеле ширина и помераја линија услед судара емитера са електронима за 16 Mn II, 3 Mn III, 10 Ga III, 8 Ge III и 14 Ge IV мултиплета рачунатих у оквиру модификованог семиемпиријског прилаза. У табели 4 дате су ширине и помераји за три Ge IV линије услед судара емитера са електронима-, протонима- и двапут јонизованим хелијумом.