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SUMMARY: The two-body problem in Maneff-type fields (characterized by po-

tentials of the form A/r + B/r2; r=distance between particles, A, B=constants)
constitutes a good model for various astronomical (and also physical, astrophysi-
cal, mechanical) problems. The relative motion in such fields is being studied from
analytic, geometric, and physical standpoints. An investigation with qualitative
character, based on the study of the phase portraits, is being performed for the
whole allowed interplay among field parameters, angular momentum, and total en-
ergy. Treating separately the nonradial one, each allowed trajectory in the phase
plane is interpreted in terms of physical motion. All possible scenarios, eleven in
the nonradial case, nine in the radial one, are identified. They illustrate three gen-
eral behaviours (motion ending in collision, periodic/quasiperiodic orbits, escape
trajectories) and two special ones (equilibria and orbits tending to equilibria.).

1. INTRODUCTION

Force fields with quasihomogeneous potential
functions of the form A/r + B/r2 (r= distance be-
tween particles; A, B=real constants) have been con-
sidered as far as back as three centuries ago. New-
ton was the first to take into account such a model
in his attempts to explain the Moon’s perigee mo-
tion, then Clairaut for the same purpose; Einstein
also used it as a possible alternative to relativity) to
compute Mercury’s perihelion advance (see Diacu et
al. 1995).

One knows that the perihelion advance of Mer-
cury and of the other inner planets cannot be fully
explained within the framework of the classical New-
tonian law, even resorting to perturbation theory.
The many pre- and post-relativistic gravitational
laws usually answered this question, but failed to

explain other issues (as the secular motion of the
Moon’s perigee). As regards the general relativity, it
succeeded in explaining well such phenomena, from
both quantitative and qualitative standpoint. Un-
fortunately, this powerful theory, which answered a
lot of important questions in physics and astronomy,
is not of much help for celestial mechanics; all at-
tempts to formulate a meaningful relativistic n-body
problem have failed to provide valuable results.

The problem is therefore to find a model able
to respond to the theoretical needs of celestial me-
chanics, to keep the simplicity and the advantages
of the Newtonian one, and also to bring the neces-
sary corrections such that orbits coming close to colli-
sions match theory with observations; in other words,
a model able to maintain the dynamical astronomy
within the framework of classical mechanics, offer-
ing at the same time equally good justifications of
observed phenomena as the relativity.

1



Such a model is that based on the above A/r+
B/r2 potential law. Considerations of physical na-
ture guided Maneff (1924, 1925, 1930a,b) to propose
a similar gravitation model (with A, B positive con-
stants, suitably concretized). Fallen into oblivion
for half a century, then brought forward by Hag-
ihara (1975) as providing the same good theoret-
ical approximations as the relativity, Maneff’s law
was recently reconsidered in a series of studies hav-
ing a deparature point Dicu’s (1993) researches. For
the two-body problem with this law, Mioc and Sto-
ica (1995a,b,c) obtained the general solution of the
generalized in the velocity plane, while Diacu et al.
(1995) found the analytic solution and the local flow
near collision. Maneff’s field was also used by Di-
acu (1993) to study the isosceles three-body problem,
and by Ureche (1995) to an astrophysical problem:
the free-fall collapse of a homogeneous sphere.

We call Maneff-type field a force field charac-
terized by a potential function of the above form in
which A and B admit any real values. Such general-
izations, but only for positive A and B, were already
tackled: Lacomba et al. (1991) studied it for nega-
tive total energy; Casasayas et al. (1993) computed
the Melnikov integral associated with the nonhyper-
bolic equilibria; Diacu (1996 pointed out the special
place of this potential among all quasihomogeneous
potentials within the framework of the three-body
problem; Delgado et al. (1996) provided the com-
plete analytic, geometric and physical description of
the two-body problem.

One might say (and physicists do it often):
to find the motion in the two-body problem asso-
ciated to the A/r + B/r2 potential is an old and
well-known exercise (e.g. Goldstein 1980, p. 123,
Problem 14). Leaving aside the fact that Goldstein’s
statement is incorrect, the above quoted results, es-
pecially those of Delgado et al. (1996), show how
complex is the problem in reality. Moreover, assign-
ing to A and B concrete expressions, various phys-
ical and astronomical situations can be modelled.
The motion in certain post-Newtonian fields, non-
relativistic (obviously, Maneff’s one included) or rel-
ativistic (e.g. Fock’s one (see Mioc, 1994), or that
described by the Reissner-Nordström metric, trun-
cating the negligible terms), is such a situation. The
motion in the photogravitational field of a luminous
source (whose gravitational action is not necessarily
Newtonian) also joins this model; if the luminosity is
changing (e.g. Saslaw, 1978; Mioc and Radu, 1992;
Selaru et al. 1993), we are in front of a perturbed
Maneff-type potential. The two-body problem with
equivalent gravitational parameter (see Selaru et al.
1992 and the motion in homogeneous potential fields
(e.g. McGehee, 1981; Diacu, 1990) belong to the
same category. Implications in astrophysics Ureche,
1995), even in atomic physics (see Sommerfeld, 1951;
Belenkii 1981; Diacu, 1993), are possible, too.

In this paper we develop the Maneff-type two-
body problem, for any value of the field parameters
(A, B), and for the whole allowed interplay among
these ones, the angular momentum and the total en-

ergy. The framework is reduced to a central force
problem, for which the analytic solution can be ob-
tained in closed form. The central part of the pa-
per consits of an analysis with qualitative character
based on the geometric represantation of the motion
in the phase plane. Treating separately the nonra-
dial motion and the radial one, each allowed trajec-
tory in the phase plane is interpreted in terms of
physical motion. The possible scenarios are eleven
for nonradial motion, and nine for radial motion.
Leaving aside the field-free case, these scenarios illus-
trate three general trends (motion ending in collision,
periodic or quasiperiodic orbits, escape trajectories)
and two special ones (equilibria and orbits tending
to equilibria).

2. ANALYTIC APPROACH

Consider the Maneff-type two-body problem
and let M and 1 be the masses. The problem may
be reduced to a central force problem, by studying
the motion of the unit mass (hereafter particle) in a
fixed frame originated in M (hereafter centre). This
relative motion will be planar and described by the
equation

r̈ = −A

r3
r − 2B

r4
r , (1)

where r=relative radius vector of the particle with
respect to the centre, r = |r|, and dots signify time-
differentiation.

In polar coordinated (r, u), eq. (1) becomes

r̈ − ru̇2 = − A

r2
− 2B

r3
, (2)

rü + 2ṙu̇ = 0 , (3)
system to which we attach the initial conditions

(r, u, ṙ, u̇)(t0) =

(r0, u0, ṙ0 = V0 cosα, u̇0 = V0 sin α/r) ,
(4)

where V0 = V (t0), V = |ṙ|=velocity, α=angle be-
tween initial radius vector and initial velocity.

Two first integrals are easily obtainable. The
force being central, the angular momentum is con-
served, and (3) provides the first integral

r2u̇ = C , (5)
where C = r0V0 sin α is the constant of the angular
momentum. The first integral of energy reads

V 2 ≡ ṙ2 + r2u̇2 =
2A

r
+

2B

r2
+ h , (6)

where h = V 2
0 − 2A/r0 − 2B/r2

0 is the constant of
energy.

The analytic solution of the solution can be
obtained in closed form. For instance, if the motion is
nonradial (C �= 0), resorting to the usual technique,
eqs (2) and (5) lead to the Binet-type equation
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d2(1/r)
du2

+
(

1 − 2B

C2

)
(1/r) =

A

C2
, (7)

with the initial conditions (Written in an equivalent
form extracted from (4) and (5))

(1/r, d(1/r)/du)(u0) = (1/r0, −ṙ0/C) . (8)

The general solution of the initial value problem at-
tached to eq. (7) depends on the sign of the param-
eter (1 − 2B/C2), and will be respectively for: (a)
C2 < 2B; (b) C2 = 2B; (c) C2 > 2B:

r =
[(

1
r0

+
A

2B − c2

)
C̃u − ṙ0√

2B − C2
S̃u

− A

2B − C2

]−1 (9)

r =
[

A

2C2
(u − u0)2 − ṙ0

C
(u − u0) +

1
r0

]−1

; (10)

r =
[(

1
r0

− A

C2 − 2B

)
Cu − ṙ0√

C2 − 2B
Su

+
A

C2 − 2B

]
,

(11)

with the abbreviations

(Su, Cu) = (sin, cos)
(√

1 − 2B/C2(u − u0)
)

,

(S̃u, C̃u) = (sinh, cosh)
(√

2B/C2 − 1(u − u0)
)

.

The radial case (C = 0) can also be solved,
resorting to eq. (6) with u̇ = 0, but we shall not dwell
upon it for two reasons: on the one hand, what we
obtain is the dependence t = t(r), relation invertible
only in particular cases; on the other hand, we are
more interested in an investigation with qualitative
character about the particle behavior. Anyway, our
qualitative approach (Sections 3-5) will include both
cases.

3. QUALITATIVE APPROACH FOR NON-
RADIAL MOTION

Eliminating u̇ between eqs. (5) and (6), we
get

ṙ2 = h +
2A

r
+

2B − C2

r2
, (12)

which contitutes the basis for our qualitative ap-
proach. The cases in which the real motion is not

possible (those leading to ṙ2 < 0) are easily remov-
able; they are

{C2 = 2B, A < 0, h ≤ 0},
{C2 = 2B, A = 0, h < 0},
{C2 > 2B, A ≤ 0, h ≤ 0},

{C2 > 2B, A > 0, h < hcr ≡ A2/(2B − C2)}.
For real motion (ṙ2 ≥ 0), eq. 12) allows the construc-
tion of the trajectories in the phase plane (r, ṙ).

REMARK 1. By (5), since C �= 0, u̇ pre-
serves its sign all along the trajectory. The mono-
tonic variation of u makes an arc of phase curve in the
lower/upper phase halfplane (r, ṙ represent (phys-
ically) spiral motion inwards/outwards. (There is
however one exception: if A=0, B=0, namely in the
absence of the field, such arcs will physically corre-
spond to rectilinear, nonradial motion). Accordingly,
a closed phase curve will represent either a periodic
(closed) orbit, rosette-shaped (ellipses included), or
rather a quasiperiodic (unclosed) orbit filling densely
an annulus (see e.g. Arnold, 1976), while a critical
phase point will physically mean circular motion.

Constructing the phase curves for the whole
allowed interplay among field parameters, angular
momentum and total energy, we obtained Figures
1-5, as followe:

C2 < 2B C2 = 2B; C2 > 2B
A < 0 Fig. 1 Fig. 3 Fig. 3
A = 0 Fig. 2 Fig. 4 Fig. 3
A > 0 Fig. 2 Fig. 2 Fig. 5

Fig. 1.
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Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Examining these figures, and taking into ac-
count the above remark, we may state

PROPOSITION 1. Consider the two-body
problem in Maneff-type field. The only possible sce-
narios for the relative motion with given nonzero an-
gular momentum are:

S1: spiral motion inwards (possibly coming
from infinity) ending in a collision;

S2: spiral motion outwards (possibly beginning
by ejection) up to r = r1, then spiral motion inwards
ending in collision;

S3: spiral motion inwards possibly coming
from infinity) tending asymptotically to circular mo-
tion of radius re;

S4: periodic (rosette) or quasiperiodic motion,

starting inwards, confined to the annulus of radii r1
and r2;

S5: circular motion of radius re;
S6: periodic (rosette) or quasiperiodic motion,

starting outwards, confined to the annulus of radii r1
and r2;

S7: spiral motion outwards (possibly beginning
by ejection) tending asymptotically to circular mo-
tion of radius re;

S8: spiral motion inwards (possibly coming
from infinity) up to r = r2, then spiral motion out-
wards leading to escape;

S9: spiral motion outwards (possibly beginning
by ejection) leading to escape;

S10: rectilinear, nonradial motion (possibly
coming from infinity) approaching the centre, then
tending to infinity;
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S11: rectilinear, nonradial motion with reced-
ing from the center and tending to infinity;
where r1, r2, re are finite and positive quantities
determined by field parameters, angular momentum
and total energy.

Proof. Introducing the abridging notation

r̃1,2 =
−A ∓ √

A2 − (2B − C2)h
h

,

r̂1,2 ≡ ∓
√

(C2 − 2B)h
h

, re ≡ C2 − 2B

A
,

let us survey the phase curves for every allowed com-
bination {A, B, C, h}.

If C2 < 2B, A < 0, the phase portrait is drawn
in Figure 1. We have: for h ≤ 0 curves 1 with r1 = r̃1

(h < 0) or r1 = re/2 (h = 0; for 0 < h < hc curves
1 (if r0 < re) with r1 = r̃1, or 2a (if r0 > re) with
r1 = r̃2; for h = hc the separatrix S with the saddle
point at (re, 0); for h > hc curves 3a.

If C2 < 2B, A ≥ 0, the phase curves are those
of Figure 2, namely: for h < 0 curves 1 with r1 = r̂1

(A = 0) and r1 = r̃1 (A > 0); for h = 0 curves 3b’;
for h > 0 curves 3b.

If C2 = 2B, A < 0 (h < 0), the phase curves
are 2a in Figure 3 with r2 = −2A/h. If C2 = 2B,
A = 0 (h ≥ 0), the phasis curves are given in Figure
4; for h = 0 the Orsemiaxis (consisting only of stable
equilibrium points); for h > 0 the halflines 4. If
C2 = 2B, A > 0, the phase portrait is drawn in
Figure 2 with the same curves for the same energy
levels (but with r1 = −2A/h).

If C2 > 2B, A ≤ 0, (h > 0), the phase curves
are those given in Figure 3, but with r2 = r̃2 (A < 0)
or r2 = r̂2 (A = 0).

Lastly, if C2 > 2B, A > 0 (h ≥ hc), we have
phase portrait in Figure 5 as follows: for hc < h < 0
curves 5 with r1 = r̃1, r2 = r̃2; for h = 0 curves 2b’
with r2 = re/2; for h > 0 curves 2b with r2 = r̃2.

Now, using Figures 1-5, and taking into ac-
count Remark 1, let us identify the scenarios implied
by every such phase curve. On curves 1 (r ≤ r1),
ṙ0 ≤ 0 ⇒ S1, ṙ0 > 0 ⇒ S2. On curves 2 (r ≥ r2),
ṙ0 < 0 ⇒ S8, ṙ0 ≥ 0 ⇒ S9, except the case A = 0,
B = 0 (Figure 3; see also Remark 1), for which
ṙ < 0 ⇒ S10, ṙ0 ≥ 0 ⇒ S11. On curves 3 and 4,
ṙ0 < 0 ⇒ S1, ṙ ≥ 0 ⇒ S9. On curves 5 (r2 ≤ r ≤ r1,
{ṙ0 < 0 or r0 = r1} ⇒ S4, {ṙ > 0 or r0 = r2} ⇒ S6.
The stable point (re, 0) in Figure 5 and Or-semiaxis
in Figure 4 imply S5 with stable circular motion of
radius re = r0. On the separatrix S in Figure 1, with
its saddle point at (re, 0), {r0 < re, ṙ0 < 0} ⇒ S1;
{r0 < re, ṙ0 > 0} ⇒ S7; {r0 > re, ṙ0 < 0} ⇒ S3;
{r0 > re, ṙ0 < 0} ⇒ S9; r0 = re ⇒ S5 (the corre-
sponding circular orbit being unstable).

Since these phase curves are the only allowed
and the corresponding scenarios are the only possi-
ble, Proposition 1 is proved.

REMARK 2. Although the motions on the
phase curves 2 have the same general features, we
have differentiated them according to the asymptotic
velocity at infinity: on curves 2a, V ↗ √

h, except
the case A = 0, B = 0 (Figure 3, see also Remark
1), for which V =

√
h; on curves 2b, V ↘ √

h (=o
for 2b’). Exactly the same differentiation was made
for the curves 3.

REMARK 3. In general, at ejection/collision
ṙ → ±∞, except for the case C2 = 2B, A = 0 (curves
4, Figure 4), for which r = ±√

h.

REMARK 4. According to eq. (11), the mo-
tion corresponding to S4 and S6 is quasiperiodic if√

1 − 2B/C2 is irrational, and periodic in the op-
posite situation (see also Arnold, 1976; Diacu et al.
1995).

4. ANOTHER PROOF OF PROPOSITION 1

Let Vr = ṙ, Vu = ru̇ be the polar components
of the velocity. It is easy to see that, for C �= 0, eqs.
(5) and (6) lead to

C2 − 2B

C2
V 2

u − 2A

C
Vu + V 2

r = h (13)

which represents in the (Vu, Vr)–plane a family of
conic sections, whose kind (ellipses, parabolas, hy-
perbolas) and nature (nondegenerate or degenerate)
are given by the parameters δ = (C2 − 2B)/C2 and
∆ = [h(2B − C2) − A2]/C2, respectively. Observe
that we recover the critical value hc = A2/(2B−C2)
for which, here ∆ = 0 (degenerate conic sections).

If C2 < 2B we have δ < 0, and eq. (13)
represents in this case a family of hyperbolas with
center (−AC/(2B−C2), 0) and foci lying on the Vu–
axis if h < hc (∆ < 0). For h = hc (13) represents the
respective asymptotes, and the family of conjugate
hyperbolas for h > hc.

If C2 = 2B then δ = 0, and eq. (13) represents
a family of parabolas, nondegenerate for A �= 0. For
A = 0 we have ∆ = 0 and every parabola reduces to
a couple of straight lines (distinct or not) parallel to
the Vu–axis.

If C2 > 2B then δ > 0, and eq. (13) represents
a family of ellipses with the same center and semiaxes
as the above hyperbolas. The ellipses are real for
h > hc (∆ < 0), reduce to the center of the family
for h = hc, and are imaginary for h < hc.

Choosing for C only positive values, the real
motion will be possible only in the halfplane Vu (=
C/r) > 0). With this restriction we recover all com-
binations {A, B, C, h} leading to impossible real mo-
tion, interpreted as: {C2 = 2B, A < 0, h ≤ 0}–
parabolas lying wholly in the forbidden halfplane;
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{C2 = 2B, A = 0, h < 0}–imaginary parallel stra-
ight lines; {C2 > 2B, A ≤ 0, h ≤ 0}–real el-
lipses lying wholly in the forbidden halfplane; {C2 >
2B, A > 0, h < hcr}–imaginary ellipses.

The trajectories in the (Vu, Vr)–plane being
only conic sections (degenerate or not) or portions of
them in the allowed halfplane, the motion on these
curves may have only the following characteristics:

– monotonic increase/decrease of Vu, tending to
∞/0;

– monotonic increase/decrease of Vu up to a ma-
ximum/minimum value, then monotonic de-
crease/increase, tending to 0/∞;

– monotonic increase/decrease of Vu, tending
asymptotically to a finite, positive limit;

– oscillation of Vu between two finite and posi-
tive limit values;

– constancy of Vu.
Recall now that Vu = C/r, so increase/decre-

ase of Vu means decrease/increase of r; Vu → ∞
means collision (if Vr < 0) or ejection (if Vr > 0);
Vu → 0 means escape. Also observe that, since u̇ > 0
all along the motion, to every segment of monotonic
increase/decrease of Vu in velocity plane corresponds
a spiral motion inwards/outwards of the particle (ex-
cept the case A = 0, B = 0, mentioned in Remark
1). Accordingly, the oscillation of Vu between two
finite, positive, limits means (physically) quasiperi-
odic or periodic orbits inside an annulus. Lastly, the
constancy of Vu means circular motion.

With this interpretation of the allowed scenar-
ios for the motion in velocity plane, scenarios S1−S11
for real motion pointed out in Proposition 1 are im-
mediately recoverable.

REMARK 5. The use of the velocity plane
facilitates the proof of Proposition 1 (the trajecto-
ries in this plane being conic section, the picture of
the qualitative behavior of the particle follows fairly
immediately). However, the radial motion (C = 0)
cannot be studied in this way.

5. QUALITATIVE APPROACH FOR RA-
DIAL MOTION

Consider now the motion is rectilinear (C =
0). In this case, the behavior of the particle is de-
scribed by

PROPOSITION 2. Consider the two-body
problem in Maneff-type field. The only possible sce-
narios for the relative motion with given zero angular
momentum are:

S1: radial motion inwards (possibly beginning
by ejection) ending in collision;

S−2: radial motion outwards (possibly begin-
ning by ejection) up to r = r1, then radial motion
inwards ending in collision;

S3: radial motion inwards (possibly coming
from infinity) tending asymptotically to rest at dis-
tance re;

S4: radial libration, starting inwards, between
r1 and r2;

S5: rest at distance re;
S6: radial libration, starting outwaerds, be-

tween r1 and r2;
S7: radial motion outwards (possibly beginning

by ejection) tending asymptotically to rest at distance
re;

S8: radial motion inwards (possibly coming
from infinity) up to r = r2, then radial motion out-
wards leading to escape;

S9: radial motion outwards (possibly beginning
by ejection) leading to escape;
where r1, r2, re are finite and positive quantities de-
termined by field parameters and total energy.

Proof. Since we did not impose restrictions to
C while constructing the phase curves, the proof of
Proposition 1 remains valid for C = 0, too (observing
however that the case A = 0, B = 0 corresponds now
to Figure 4). The phase portraits are the same but,
as regards their physical interpretation, Remark 1
transforms into:

REMARK 6. By (5), since C = 0, u is con-
stant all along the motion, this makes an arc of phase
curve in the lower/upper halfplane (r, ṙ) represent
(physically) radial motion of the particle performed
inwards/outwards. Accordingly, a closed phase curve
will represent radial libration, while a critical phase
point will physically mean rest.

With this, the statement of Proposition 1 (al-
ready proved) can be immediately transposed into
that of Proposition 2. Scenarios S10 and S11 are no
longer possible, because the motion is now radial.

REMARK 7. All cases concerning comparison
between C2 and 2B in the proof of Proposition 1
reduce now to cases concerning the sign of B (it is
the same for the forbidden domains. Also, the right-
hand side of eq. (12) and subsequently r1, r2, re

change their expressions (by putting C = 0).

REMARK 8. Within the framework of the
Maneff-type two-body problem, the collision/ejecti-
on can be both rectilinear and nonlinear (not only
rectilinear, as in the Newtonian problem). In the
nonrectilinear case, the particle spirals around the
center, performing infinitely many rotations before
collision (after ejection); this is the so-called black
hole effect (see Diacu et al. 1995).

REMARK 9. The qualitative behavior of the
particle can also be investigated using the zero rel-
ative velocity curves, that are circles whose radii
are given by the roots of the equation resulting by
putting V = 0 in (6). Studying the nature and the
sign of these roots, one finds the domains of allowed
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motion; further, taking into account the character-
stics of the motion, the above described scenarios of
the motion are recovered.

All these results presented in Sections 2-5 offer
a wide picture of the two-body problem in Maneff-
type fields from different standpoints: analytic, geo-
metric, and physical.
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Problem dva tela u poǉima Mameff-ovog
tipa (okarakterisanih potencijalom oblika
A/r + B/r2; r–rastojaǌe izme�u qestica, A i
B konstante) predstavǉa dobar model za razne
astronomske (i tako�e fiziqke, astrofiziqke,
mehaniqke) probleme. Relativno kretaǌe u
takvim poǉima razmatra se sa analitiqke, ge-
ometrijske i fiziqke taqke gledixta. Sprove-
deno je istra�ivaǌe kvalitativnog karaktera,
zasnovano na ispitivaǌu oblika faze, za celu
dozvoǉenu oblast sprege izme�u parametara

poǉa, ugaonog momenta i ukupne energije. Sva-
ka dozvoǉena trajektorija u faznoj ravni je
interpretirana pomo�u fiziqkog kretaǌa.

Razmatraju�i odvojeno neradijalne tra-
jektorije, svi mogu�i scenariji, jedanaest u
neradijalnom sluqaju, a devet u radijalnom,
su identifikovani. Oni ilustruju tri opxta
ponaxaǌa (kretaǌe se zavrxava sudarom, pe-
riodiqne/kvaziperiodiqneorbiteiputaǌera-
zlaza) i dva specijalna (ravnote�ne i orbite
koje te�e ka ravnote�i).
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