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 SUMMARY: The case of spherically symmetric, self-conaisteﬁt, stellar systesms,
‘'whose total mass is contained within a finite radius, is considered. A general formula

for their potential energy, where the latter is expressed in terms of the total-mass
square, limiting radius and a dimensionless coefficient depending on the general
density slope, is given. Though the increase of this dimensionless coefficient follows

~ the increasing in another dimensionless quantity (ratio limiting radius to half-mass
one), the ratio of the two, for the case of the realistic models examined in the
present paper, remains almost constant, usually about 0.4-0.5 depending on the

given model.

1. INTRODUCTION

- As well known, the virial theorem appears as
an almost indispensable tool in stellar astronomy, es-
pecially for the purpose of mass determination. It is
also well known that for self-consistent stellar sys-
tems the virial is equal to the potential energy. Such
stellar systems are the subject of the present paper.

- The most frequent case, when masses are de-
termined (more precisely estimated), is to apply an
approximate formula based on the virial theorem
where the mass is obtained through the radius and
the mean velocity square. The approximative char-
acter of such formulae is due to the presence of a
dimensionless quantity in the potential energy de-
pending on the system’s geometry and slope of the
mass distribution, which 1s usually estimated to the
order of magnitude only. Here one should also men-

tion the amount of the radius being an additional
problem. -

The case of spherical symmetry, as the most
simple one, has been, certainly, most frequently tre-

ated in the literature. There use is made of some
equivalent radii, such as the effective radius (¢. g.

Kulikovskij, 1985 - p. 216) and the gravitational one

(e. g. Binney, Tremaine, 1987 - p. 213), etc. These
radil can be related to the physical radii of a sphericai
stellar system, such as the limiting radius (surrcuna-

ing the system’s total mass) - provided that it is fi-
nite, being the case considered in the present paper -
and the half-mass one (surrounding half the system’s

total mass). In the two books mentioned above one

can find a relationship between the equivalent radii
and the physical ones given for some special cases,
but the problem, certainly, deserves more attention.

In addition, Binney and Tremaine (1987 - p. 214)

mention a result of Spitzer connecting the amounts
of the gravitational radius and of the half-mass one

(called median by them), however the work of Spitzer
(1940) concerns the case of the polytrope model with
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n=>5 (see the explanations below) and it is no result
of a very wide application.

2. PROCEDURE

For a self-consistent spherically symmetric ste-
llar system, as can be easily shown, the expression
for the potential energy has the following form

GM?

Tt

(1)

where G is the universal gravitation constant, M the
total mass of the system, r, the limiting radius and

k(> 0) — the dimensionless coefficient which, in view
of the spherical-symmetry assumption, depends on
the slope of the density function only. From (1),
bearing in mind the formula given in Binney and
Tremaine (1987), it is easy to see that the coefficient

k 18, in fact, the ratio of the limiting radius to the
gravitational one. In view of the simple relation be-

tween the latter and the effective radius (their ratio
is 2) which is found from the comparison of the for-

mulae given in the books mentioned above, it is very
easy to find that the ratio of the limiting radius to
the effective one is equal to 2x.

This dependence can best be seen through the
relationship between x and another dimensionless co-
eficient ¥ which is the ratio of the limiting radius to
the half-mass one. As will be seen below any in-
crease 1n v 18 followed by a corresponding increase

of x. In the case of the polytrope with n = 5 (n
polytrope index) both increase to infinity, but their
ratio remains finite, i. e. k/y = 0.384 as found by
Spitzer (1940). However, for any system contained
within infinite limiting radius, but with finite total
mass, (like the n = 5 polytrope) the ratio /v must
be finite in order to obtain a finite potential energy
in view of (1).

Wp=—k

3. RESULTS

In this paper a few spherically symmetric mo-

dels where the total mass is contained within a finite
radius are examined. These models chiefly contain

some parameters so that by varying them one finds

the limits of x for each of them. These limits are
given together with those of .

The models studied here are the following:
1) the power-law model (Model I) where the mass

within an arbitrary radius M (r) depends on r
as

M(r)y~rf, 0<B<3 (2)

i1) the polytrope model (Model II - details e. g.
Ogorodnikov, 1958, p. 460);

1i1) a model studied by the present author (Model
III - formula (1), Ninkovié, 1991);

iv) another model studied by the same author
(Model IV - form. (1), Ninkovié, 1988);

v) modified Hubble profile (Model V - form. (2-
37), Binney and Tremaine, 1987);

vi) King’s model (Model VI - form. (27), King,

1962).

The formulae mentioned in the parentheses for
the case of Models III-VI describe the density-radius
dependence. The formulae describing the density
are rather theoretically based than empirically for
the case of Models I-11I, whereas those appearing in
Models IV-VI are purely empirical.

Model I, as easily seen, yields

. B GM?
286—-1 rg

It 18 clear that for § < 1/2 this model is dy-

namically unstable, but it is hardly expected to be
completely applicable to a realistic stellar system.
Due to its simplicity Model I has been used as a
first approximation only and generally within spa-
tially limited segments of a stellar system.

As for the other dimensionless coefficient - ¥

- as easily seen, its value for 8 = 3 is 21/3; further
1t increases with x increasing so that for g = 1/2,
when the latter tends to infinity, o reaches the value
of 4. The ratio x/v remains over a significantly wide
interval of 8 almost constant (about 0.5) to begin an
abrupt increase as 8 approaches the critical value of

1/2.

W, =

In the case of Model II, as well known (e. g.
Ogorodnikov, 1958 - p. 316), the following formula

3 GM?
O —n re

Wp=_ ’ 05"55 (3)

18 valid for the potential energy. Considering that
the behaviour of « is self-evident, one should say that

the ratio x/v decreases with n increasing, beginning
with about 0.48 (n = 0) to reach approximate values

of 0.45 (n = 1), i. e. of 0.38 (n = 5) for the three

cases allowing an analytic solution. The situatior
for n > 5 corresponds to dynamical instability as

evident from (3). In view of the coincidence between
Model II (n = 0) and Model I (8 = 3) a compariscn
of them becomes interesting. For example, the case
n=1, f=23/2 yields the same value for x - that of

3/4 - and the corresponding values for v are close to

each other - 4! /3 (or approximately 1.59, Model I,

1. e. about 1.65 (Model II). For higher values of the

parameters the difference between the two models
becomes more significant.
Unlike the former two Model III has no param-

eter so that it yields a unique solution x = 5/7,y =
1.56. A similar situation appears in the case of Model
I with 8 = 5/3 where x has exactly the same value
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and 7 is close to its counterpart (y ~ 1.516). How-
ever, this similarity is of a global character since in
Model I1I the density has no singularity at the centre
and vanishes at the limiting radius. A similar com-
ment is valid for the comparison Model I - Model

II.
For the case of Model IV the limits for the two
dimensionless coefficients depend on the ratio r./r;

(Ninkovié, 1988 - form. (1)). The extremal cases
corresponding to the values of 0 and 1 for this ratio
yield: x = 7/5, vy = 2.88,1. e. x = 0.76, v =
1.65, respectively; the ratio x/y remains practically

unchanged - it is equal to 0.49 in the former case, 1.

e. to 0.46 1n the latter.
In the case of Model V the potential energy

of the system can be obtained only numerically. A
solution expressed in terms of (1) depends on the

ratio of the limiting radius to the characteristic one
(re - form. (2-37) of Binney and Tremaine, 1987).
An extremal case i1s when this ratio is equal to 1, but
the corresponding opposite case does not exist since
then the total mass of the system becomes infinite

no matter whether r, — oo or r. — 0. The results
are given in Table 1.

Table 1 The Results for Model V

£/

0.47
0.43
0.42
0.44

0.45

In the case of Model VI the situation is more
complicated since then even the mass within an ar-

" bitrary radius is not obtainable analytically. On the

basis of numerical solutions the values for both «
and v are obtained as functions of the model param-

eter r;/r.; the latter two explained in King (1962). It
should be added that in King models the name " tidal
radius” is preferred for the limniting radius. The re-
sults are presented in Table 2 where for convenience

the values for v are given through the ratio x/v as
in Table 1.

Table 2 The Results for Model VI

R

0.84 0.44
0.97 0.44
1.34 0.42
1.81 I 0.41
2.53 0.40
4.07 0.40
6.10 0.42
0.38 0.45

4. DISCUSSION AND CONCLUSIONS

For a special case - a self-consistent stellar sys-
tem with spherical symmetry represented by a model
with finite limiting radius - the general formula yield-
ing the potential energy (1) is derived. The dimen-

sionless coefficient - « - in this formula is related to
the general density slope in the system. Its lowest

value, that of 3/5, corresponds to the homogeneous
sphere; the more significant is the decreasing in the

density, the higher value 1s acquired by x. The best
illustration of this dependence is through the rela-

tionship between « and v (the ratio of the limiting

radius to that of half mass) where the increasing in

one of them is followed by the corresponding increase

of the other one. This circumstance enables rewrit-
ing of (1) to be made in such a way that x is re-

placed by the ratio x/v and instead of the limiting
radius there appears the half-mass one. With the
exception of Model 1 which, though very simple, is
nevertheless, sufficiently unrealistic, all other models
examined here prefer a rather constant value of /7
ratio, about 0.4-0.5, which might be a general char-

acteristic of realistic models of self-consistent stellar

systems with spherical symmetry.
Model IV and Model VI, among the ones ex-

“amined in the present paper, deserve a special at-

tention. They are empirical and they are applied tc
coronae of spiral galaxies, i. e. to globuiar clusters
and dwarf galaxies, respectively, which are the stel-
lar systems sufficiently close to the self-consistency
condition, unlike halos and bulges of spiral galaxies
to which Modei V is applicable.
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O MNOTEHILNJAJIHOJ EHEPI'NJN C®EPHO CMMETPUYHNX 3BE3LAHNX CUCTEMA
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Opu2uHaaHu HaGyuYHu pao

PasmaTpa ce ciydaj caMo-ycarjaleHuX cge-
PHO CUMETPUIHUX 3BE3TaHUX CUCTEMA IHja j¢ YKYITHA
Maca calpXaHa YHYTap KOHA4YHOI ITOJYIIPEIHMKA.
IlaTa je ormmta opMyiia 3a BUXOBY ITOTEHIIM JaJIHY €H-
eprujy rue ce oba BeJIM9YMHA HM3paxaBa IIPEKO KBajJpa-
Ta YKYITHE Mace, 'PaHUYHOr [MOJYIIpeYHUKA U jedHOr
0e3XIMMEH3NOHOI Koe(UIIM jeHTa 4YMja BPEOHOCT 3aB-

10

VICH OX ITpOCETIHOr IrpaanjeHTa rycTude. Ilpemia pact
OBOI' KoePUIMjeHTa ciienq pamhewe jeqHor Ipyror
Ge3QIMMEH3UOHOI KoePUILM jeHTa (OXHOoca H3Mely rpa-
HUYHOI ¥ T3B. “TMONYNpeIHHKa II0jla Mace™), OIHOC
OBa OBa, 3a CJ1y9a] peaJIMCTUIHUX Molejia UCITUTAaHUX
Yy OBOM paldy, OCTaje CKOpO KOHCTAaHTaH, OOMYHO OKO
0,4—0,) y 3aBUCHOCTH OO JaTor MojeJa.



