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SUMMARY: The purpose of this note is to analyze some details concerning the
possibility of accelerated orbital motion in the case of the one body problem in

Rosen’s bimetric gravitation theory.

Rosen’s bimetric gravitation theory (one of
‘two bimetric theories of the same author, both al-

ternative to classical relativity) has been formulated

In the first place as a theory which allows a generally
covariant expression for gra.v1tat10na,l energy, a quan-
tity which has not been formulated 1n a satistactory
way 1n classical relativity. Further, the analysis of
the spherically symmetric grav1tat10nal field showed
that horizons, 1.e. black holes of the Schwarzschild
type, were not allowed 1n that theory. Moreover, the
himit of stability of stellar masses was several times

greater than in classical relativity [1]. But bimetric

gravitation theory encountered serious difficulties 1n
an attempt to explain the accelerated orbital motion

of the binary pulsar 1913416 [2]. An attempt was
therefore made in [4] to establish the possibility of

an accelerated orbital motion 1n a spherically sym-
metric field, based on a possibility of existence of
nonstatic fields of that type, not allowed 1n classical
relativity. It appears that such fields are allowed 1n
Rosen’s theory under relatively ssmple conditions.

We shall begin with a brief survey of relevant
formulas for a static field.

‘a) We consider the spherically symmetric line ele-

ment in Rosen’s theory, as obtained in [1]
Z ds? = M/ (dr? + r2d¥® + r? sin® 9dA?)—

_6—2M/rdt2

(1.1)

The coordinates in (1.1) are isotropic; the Schwa-

rzschild line element, written with respect to that
system, reads

S ds? = (14 )4 (dr? + r7d9 + 1 sin? 9dN?)-

1 — M/2r *

(1+M/2r (1.2)

) dt*

the transformation from purely radial coordinates R,
with respect to which that element is habitually for-
mulated, being

R =r(1+ M/2r)? (1.3)
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There results, from (1.1) and (1.2), that the
metric coefficients of the bimetric field, when com-
pared to those of the Schwarzschild solution, agree
to the second order in M/r for the time-like part
and to the first order for the space-like part. That
is sufficient, as is pointed in [1], to bring about the
same effects in the Solar System as those predicted
by classical relativity; the accuracy of instruments of
the present time is not sufficient to observe higher
order effects, which could be relevant for verifying
the validity of different theories.

It has been proven in [3], [4] that bimetric
gravitation theory allows metrics conformally equiv-
alent to (1.1), the conformal factor being the function
of a solution of the wave equation in the Minkowskian
metric, expressed with respect to spherically sym-
metric coordinates

Plee = 0 (1.4)

where the bar denotes covariant differentiation with
respect to the Minkowskian metric and underlined

indices mean that they are raised with the help of
corresponding metrical coeflicients. We assume ¢
1sotropic, 1.e. dependent on the radial coordinate r
‘and on coordinate time t only. Spherically symmetric

ds?, conformally equivalent to (1.1), then reads
ds® = e*¥ds? (1.5)

This metric, at the difference from (1.1), is no more

static. This makes a notable difference from clas-
sical relativity, where such solutions, by Birkhoff’s

theorem, are not possible.
b) The differential equations of time-like geodesics in

the equatorial plane of the central body determine,
as usual 1n relativistic theories, the orbits of planets
in the gravitational field considered. In the metric

(1.5) we have first the Keplerian integral

2,2[Mr= " +p(t,r)] 3;\ = | = const (1.6)

Then, substituting by (1.6), proper time § by the
angular coordinate A in the remaining two equations
of motion, we obtain

2 M
r’ — ;(1 — -;—)r’2 —(r—2M)+

(1.7)

+I_2 2(Mr"l+ga)(a‘P M) —0

“"'(1—-2—]1{)rt —172p1e2BMr T o) °F P - =0 (1.8)

ot

As a result [4] the orbital motion of the test body
has an angular acceleration if, and only if

% <o

ot (1.9)
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If we assume, similarly, ¢ acting in the sense of de-
creasing the radius vector in successive orbits, we

have the 1nequality

(1.10)

c) We shall consider now the solution ¢ (1.4) corre-
sponding to the case of an outgoing wave, given [5]

by

By differentiating one obtains directly from the abo-
ve relation

dp  Op 1

or ) 9t~ r”
¥ being an arbitrary function of ¢t — r.
One distinguishes two possibilities:

1) ¢ > 0. Then for positive %ff- inequality (1.10)
becomes trivial. For negative %‘f one has

M

(1.12)

| | < -3 (1.13)
2) ¢ < 0. Then by (1.9) and (1.12) one has

Oy 390

5 > | (1.14)

This case 1s interesting in the sense that it acts ”aga-
inst” the metric (1.1) (¢ < 0,2M/r > 0).

d) Let us assume, by a procedure usual in relativity,

the gravitational field sufficiently weak to allow a lin-
ear approximation. We shall obtain the decrease of
mutually corresponding radial distances in succesive

revolutions (4] for

Op
== >0

Now, assuming only (1.9) satisfied, there appears
by (1.12) that ¢ < 0 is a sufficient condition for

(1.15) and (1.14). Conversely, if one assumes only
(1.15) satisfied, with the complementary condition
@ > 0, one obtains (1.9), with the additional in-
equality |0:p| > Oy .

Finally, on account of (1.9) and (1.15), but
with no particular condition on ¢, one obtains from

(1.12)

(1.15)

dp 1 dy
or > 7 arn ot

e) Consider the general solution of the wave equation

(1.4) [5], expressed as a combination of ingoing and
outgoing waves

(1.16)

= [t )+t 0] (117

Conditions (1.9) and (1.15) then yield
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O O

01 02
ot —r) T ot +r) <0 (1.19)
wherefrom
01 1
57 < —599 (1.20)

It 1s interesting that the derivatives with respect to
time of the function corresponding to the outgoing
wave 1s the only to be limited by the magnitude of

¢; (1.14) represents a "half” of the inequality (1.16).
'We note that the inequality (1.15) is in general

correct, and that (1.10) has to be taken instead only

1n the case when the distance between the central
body and the satellite is very small.

The essential result obtained in [4) shows that
accelerated orbital motion is possible in Rosen’s the-
ory, under conditions which appear to be simple, at

least for the one body problem. It is a consequence of

the fact that Birkhoff’s theorem from classical rela-
tivity, by which a spherically symmetric gravitational

field cannot be nonstatic (or time dependent), does
not hold in Rosen’s theory. In other words, monopole
gravitational radiation (by Synge’s definition [6]) is
possible. The theoretical possibility of existence of
nonstatic fields (1.5), conformally equivalent to the

basic static field (1.1) is quite simple and has nothing

artificial in itself; after all, there are in classical rel-
ativity solutions of the gravitational field equations
which are purely radiative, like the Einstein-Rosen

cylindrical metrics {6]. Of course, the question of the

physical background of conformal nonstatic fields re-
mains open. Perhaps such fields exist in every spher-
1cally symmetric solution, but the phenomenon is too
small to be observed in stable systems like the Solar
System and would be observable under some con-
ditions of instability? In any case, the inequalities
obtained in this paper show that the variety of solu-
tions allowed is very large, the restrictions implied by
them not being strong. We have restricted ourselves
to the qualitative aspect of the questions considered,
since an attempt at making quantitative assumptions
would be too arbitrary.
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O KPETAY I10 OPBTU TEJIA Y CSEPHO CUMETPNYHOM I10JbY

. JIykadeBuh

Y ROSEN-OBOJ BUMETPNYKOJ TEOPNJN I'PABUTAIINJE

Mamemamuuxku gaxyamem, Cmyoenmcxku Tpe 16, 11000 beoepao, Jyeocaasuja

YIOK 52-323.8
IIpemxo0HO caonwmerse

Y OBOM c€ paly MCIIUTY]Y YCJIOBH IIOX KOjJUMa
NOJIa3y OO YOp3aHOr OOMJIaXE€Ha HEOECKOr TeJla OKO

rpaBUTAIlMIOHOI M3BOpa Y Rosen-0BOj OMMETPHUIKO]
Teopuju rpasUtanje. Ilonmasu ce om NpeTIIocTaBKe
Ja ce Hebecko Testo Kpehe cpasMepHO GJIN3y 'paBUTa-
ILIMOHOI' U3BOpa (3HaTHO Beher HeGecKor Teja), aiu je

MIT1aK JOBOJEHO YOaJheHO Oa O ce Y OCHOBHUM (POopMY-
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JlaMa MOrJla U3BpIIMTH JUHeapusalyja. Ilopemeha-
JHM JAaKTOp KOJH 3aBHCH OO BpEeMEHA (WITO j¢ HAYECITHO
HeMoryhe y KJIacMYHOj peJIAaTMBHOCTH) HOIymTa YO-

p3aHO OOMJIaXeHe U IpEICTaBJba CE€ IIPBO Ka0 €MH-
CHOHO, 3aTUM Kao €MMCHOHO-AIICOPIIIIVIOHO PpeEIlICHL

TaJIaCHE jeaHAYMHE.



