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SUMMARY: A comparative study of few- body systems with gravitational and
electromagnetic interaction is given, with emphasis on similarities and distinctions

of a number of relevant characteristic features. Recent advances in investigations of
multiply excited atomic and planetary celestial systems are presented and a number

of some interesting analogies are discussed.

1. INTRODUCTION

The formal similarity between the gravitati-

onal and electrostatic interacilons has been noticed
for a long time, for both types of forces are expressed

by the same mathematical function
Fij = Xijrij [}, Tij = 1i — 1 (1)

with r;; as a distance between two interacting bodies.
The difference appears in the coupling constants A;;,
‘which in each particular case reads:

(Coulombic case) (2)

i = ¢ig;

/\,‘j - ymgm, (Newtonian case) (3)

where ¢;, q; are the point charges and v, m;, m; are
gravitational constant and body masses, respectively
(all in appropriate units). Strictly speaking, these
laws refer to the asymptotic interactions between

real physical systems, more precisely for the mutual
separations much larger than the dimensions of the
interacting subsystems. In the realm of atoms and
molecules, whose structure and interactions are gov-
erned by the Coulombic force, nonelectrostastic in-
teractions appear when charged subsystems are bro-
ught into close contact, which can alter the simple
power law (1) radically, e. g. chatge irom an attrac-
tive to repulsive and vice versa. It is this interplay

between Coulombic and chemical forces which makes
the material world stable, to a degree depending on

the temperature (i. e. the phase state) of the sys-

tem. But even in the case of the so-called elementary
particles, like electron and proton, the electzomag-
netic interaction deviates consideraily at very close
particle separations (Drell, 1969) specific effects, like

the so-called zero-point fluctuations, vacuum polar-
ization etc, make the interaction potential for r;; = 0

finite. These effects, which are responsible for a num-
ber of subtleties within the atomic physics are dealt

within the quantum electrodynamics (QED), which
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is based on the notion of exchange of virtual parti-
cles rather than on the concept of line of force, the
latter being the (classical) basis of the interaction-
at-distance concept of force.

Similarly, Newton’s law is valid only, for not
too strong gravitational force, otherwise one should
turn to the Einsteinian theory of gravitation, 1. e.

to the General (Theory of) Relativity (GR). The

latter situation arises when bodies with extremally
large densities closely interact, so that r;; can be

very small, as the case with the hypothetical black
holes is. We shall deal, however, with extended celes-
tial bodies and shall likewise ignore other relativistic
effects, like the small deviation of the simple power

law (1) due to the mass variabillity etc.

So, we shall confine ourselves to the most sim-
ple physical situations when all interacting bodies

(particles) may be considered as pointlike, structure-
less objects, so that the force law is given by relation

(1)

Because of the formal similarity, it 1s tempting
to ascribe to both types of interactions the same un-
derlying physical source of the for-ce. Indeed, among
the so-called fundamental interactions: gravitati-
onal, electromagnetic, weak and strong, it was two

first which were first considered for an unification.
As it is well known, this attempt failed. Moreover,

it is clear now that the gravitational force is funda-
mentally different from the rest and if the so- called
Grand Unification (GU) of all fundamental interac-
tions will. ever be accomplished, the gravitational
field will be the last to join the other three. On
the other hand, the electro-magnetic interaction has
been successfully coalesced with the weak to make
the so-called electroweak interaction, and there 1s a
good prospect that this will be joined by the strong
1nteractions to make the so-called Unified theory, the
present Standard model of elementary particles. An-
other essential difference between the gravitational
and other interactions is the difhculty to formulate
a quantum. theory of gravitational field. While 1t
has been one of the greatest successes of the mod-
ern physical theory to establish an extremally ac-
curate quantum theory of the electromagnetic field
(QED) and construct a number of very prospective
theories of weak and strong interactions, notably the

so- called quantum chromodynamics (QCD), despite
enormous efforts by theoreticians the gravitational
field has defied all attempts to merge two greatest
intelectual achievements of our century: GR and
Quantum mechanics (QM). Moreover, it is not yet
clear whether the gravitation is a proper force at all,
or only an aspect of the space-time manyfold, as as-
serted by GR. In the light of this puzzle the problem
arises whether one should first set up a more general
QM which incorporates ab initio the structure of the
space-time manyfold, or try to quantize the gravita-
tional field by the standard QM (see, e. g., Linden,
1990). The latter approach has resulted in suggest-
ing a hypothetical gravitational quantum, graviton,
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in analogy with the (electromagnetic) photon, but all
searches for the gravitational waves, which should be
subsequently quantized, have turned out to be futile
up to now. Nevertheless it 1s customary now to re-
gard both electromagnetic and gravitational interac-
tions via exchanges of virtual bosons — photons and
gravitons, respectively. Being of infinite range, both
forces are conceived to realize by massless bosons,
with the difference that the photon has an intris-

tic angular momentum (spin) equal one, whereas the
graviton has spin 2. Apart from the strong inter-
action, which 1s mediated by the masless hypothet-
ical quanta called gluons, the infinite range of elec-
tromagnetic and gravitational forces makes 1t possi-
ble to formulate suitable potential functions of both
interactions and apply the standard mechanisms of
QM and classical potential theories In treating cor-
responding physical systems.

If the gravitational interaction appears some-
what apart from the other three regarding its stre-
ngth and vague status as a force, electromagnetic
field has, in distinction from the gravitational and
strong forces, the unique property that the mediat-

ing quanta (photons) are not coupled with the inter-

acting particles (charges), being electrically neutral.
On the other hand, being coupled with gravitating
masses, they can be distracted by the latter from its
straight -line trajectories, the fact which yields the
procedure to ascribe to the physical space a dynamic
feature, as done within GR, which thus geometrisas-
sed gravitational field.

If this interaction between the electromagnetic

and gravitational field furnishes the mean to deter-

mine the global space-time structure, the combined

“action of the universal gravitation and Coulombic

forces (including those derived from it, like various

kinds of chemical forces, magnetic interaction, etc) 1s

responsible for the large-scale structure of the mat-
ter, like the celestial bodies, galaxies, etc. Generally
speaking, this cooperative influence on the shape of
the inert matter is determined by the balance noticed
as one goes from the bulk matter to the microworld
level; the smaller the material entity 1s, the mnore
prominent the Coulombic force becomes, and the
smaller influence of the gravitational mass on its mo-
tion is. As a consequence, at the planetary level the
electromagnetic force appears completely insignifi-
cant, while at the atomic level it is only inertial mass
of the particles which matters. This fact 1s a conse-
quence, or rather a sign of the enormous difference
in numerical values of the electromagnetic and grav-
itational coupling constants, which differ by approx-
imately 40 degrees of order. In the situations when
the Coulombic force is eliminated at the very mi-
croscopic level, by mutual neutralization of elemen-
tary particles, like electron and proton, the equlib-
rium is destroyed and the selfgravitating matter asc-
quires properties, like those of the hypothetical neu-
tron stars, which go beyond our present experience,
including those of the black holes. We shall confine
ourselves, however, to the more common matter con-
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ditions, where the identity of the ordinary elemen-
tary particles is ensured.

9. GRAVITATIONAL AND ELECTRO-
STATIC INTERACTIONS

Despite the enormous difference 1n strengths,
both interactions have a number of common proper-

‘ties, which explain partly why they play so dominant

roles in shaping the matter at macro- and micro-
levels, respectively. We enumerate some cf these fea-
tures of the inverse square law force:

(1) It is the only power-law (apart from the

harmonic-force law, see e g. Blitzer, 1988) which
enables one to treat the spherical bodies as the point
“particles in the most relevant physical situations.

(i1) Only the inverse-square law provides the
most pleasant property of the spherical distribution
of mass and charges that the interior of this spheri-
cal layer appears force-free (that is, the potential 1s

constant).

(ii1) Because of the particular (Euclidian) stru-
cture of the real three- dimensional physical space,
the (power) square law allows for the important
physical quantity — the line of force — to be defined
for the point sources. Moreover, it can be shown
that the real space must have exactly three dimen-
sions, if the potential theory is to work at all. This
can be the best appreciated by considering the two-
dimensional spherical (noneuclidian) space, as often

done for expounding some ideas from GR.

(iv) Beside the linear (harmonic oscillator) fo-
rce, with n = 1, 1t 1s only n = —2 power law:
F = Ar™ which ensures the closed orbits for the mo-
tion around, the force centre. This important result
stems from the so- called Bertrand’s theorem, which
asserts that only Young and Newton forces support

stable (against external perturbations) periodic or-
bits. As pointed out by a number of authors (e. g.

Goldstein, 1981) only from this theorem and from

the observational evidence concerning the remark-
able stability of the planetary motion Newton could
have inferred his law of the universal gravitation,
without resorting to any calculations (discarding, of
course, Young force, on general physical grounds).
This common feature of the gravitational and elec-
tromagnetic force has been clue for formulating the
so-called planetary model of atomi: systems due to
Rutherford and Bohr, from which the Quantuin me-
chanics has arisen as the final step.

(v) These forces appear as inferactions with
the longest range in nature. In this respect, they are
the only ones which exclude the asymptotes to the
zero- energy binary system configurations, within the
classical dynamics, or correspondingly exclude the
plane-wave state function in the quantum-mechani-
cal formulation, for any energy (e. g. Newton, 1966).

(vi) It is this particular mathematical struc-

ture of the Coulombic force which furnish a num-
ber of fundamental relations between the classical

and quantum mechanical descriptions of the Coulom-
bic systems, which are known as the corresponding
(principle) identities (e. g. Norcliffe, 1975). The
latter make the analogy between the celestial and
atomic physics less accidental, than it is generally
believed, as we shall see later on.

Another important common property (tho-
ugh, possibly, not quite unique among physical in-
teractions) is their pair-wise additivity. If the system
consist of N bodies, with binary interaction V;;, then
the potential function can be written as:

V({r:}) = Lic; Vij (4)

where {r;} stands for all positions of the constituents.
Hence, no many-body forces must be invoked in or-
der to describe the behaviour of such many-body sys-
tems. This is by no means general property, as ex-
amplified in nuclear physics, for instance, molecular
physics (Margenau and Kestner, 1975) etc.

Besides the difference in strengths, there are
other fundamental disimilarities between the gravi-

tational and electrostatic interactions. The most 1m-
portant is the dimensionality of corresponding ’spa-

ces’: there are two kinds of the electrical charge,
whereas only one sort of gravitating mass is known
in Nature. As a consequence two charged particles
either attract or repel each other, whereas two neu-

tral masses undergo attraction only. However, this
is not always true. Better to say, it is as true as the
statement that the light is the fastest signal possible,
for there are situations when massive particles move
faster than the electromagnetic waves, as 1n a disper-

sive medium. We shall elaborate this in a somewhat
more detail, starting with gravitating bodies.

For the sake of simplicity, consider two i1den-
tical spherical masses, emersed in an infinite, ideal

(nonviscous) fluid, with density p; (see Fig. 1). We
distinguish two cases with regard to the particle den-
sity pp:

5 P N P
@'—‘m————% _

Fig. 1. Gravitating bodies in an ideal fluid.

(a) px > py. The force Fi, will be the stan-

dard Newton’s attraction: - ym;mnia/r?,, but the
fluid will exercise its influence too (see, e. g. Ho-
rak, 1984) providing a negative contribution to the
primary attraction, since, for instance, the influence
of my on m; will be diminshed by the ’zhost’ mass
m., symmetrically placed, as shown in Fig. 1, and
similarly for mp. Obviously, in the limmit o, — py,
no net interaction will occur.
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(b) pp < py. In this case the net interaction

will be repulsive one, as can be easily inferred from

Fig. 1, by the same reasoning (we note that the

assertion in Horak, 1984, that the force will be again
attractive is wrong, as can be deduced also by the

'centrifuge argument’, quoted by the same author).

Horak (1984) also shows that in the case of

different body masses and if py >,¢, p2 <,y (or vice
versa) the net force will be repulsive also. If p, = 0
one can construct a '"dynamics of bubbles’ in a fluid,
but we shall not dwell on it here.

In the similar manner, one can demonstrate
that, for instance, two equal charges will attract each
other, if emersed in a charged fluid of the greater
charged density, etc.

These effects can bear some consequences on
the measuring of gravitational constant ¥y in a me-
dium, like air. Some large scale phenomena of thé
type just described may be of some importance to
the cosmological model used currently, as described
by Voracek (1985). .In fact, one could construct a

particular cosmological model based on the ’bubbles
dynamics’, but this would be out of scope of the
present paper. _

The principal consequence of the drastic dif-
ference in magnitudes of coupling constants is that
the particles with Coulombic interaction undergo lar-
ge accelerations and acquire also large velocities, as
examplified by the atomic electron motion and as dif-
ferent from the macroscopic and celestial bodies. As
a direct outcome there is a qualitative difference 1n

treating processes and systems at the ordinary (and
astronomical) and microscopic level: while, at nor-

mal conditions, one employs the (post)Newtonian
theory for describing macroworld dynamics, in the
realm of atoms and elementary particles one resorts
to the quantum mechanical formalism, as examph-
fied by Schrodinger equation. However, there are
situations where the Newtonian dynamics appears
inadequate, as mentioned above, i. e. when the
gravitational force becomes unusually strong, as 1s
the case with (mini) black holes, and one turns to
the more adequate GR, with possible quantum ef-
fects included. On the other hand, atomic and sub-
atomic systems can be brought into states where the

(semi)classical dynamics applies, as the case with

highly excited atoms is. It is these regions of weak
forces which we intend to discuss and compare here:

the region of (semi)classical dynamics for the Coulo-

mbic systems and of the (post) Newtonian approxi-
mation of the gravitational systems. As we shall see
a number of significant analogies and striking sim-
ilarities can be revealed for these apparently very
distinct systems. ”

One important property of the power-law in-

teractions is the homogeneity of the potential func-
tions: '

V({0ri;}) = 6*V({ri;}) (5)
18

where 8 is a real number. Now, if the system motion
obeys Newton’s laws, then the following homothelic

properties (the so-called scaling laws) hold

(6a)

ris — v * Ty

t — grtk/2 (6b)
E—6"*E (6¢)
L; — 6%L; (6d)

where E is the total energy, and L; the angular mo-

mentum. In the case of the inverese-distance interac-
tion systems (IDIS), ¥ = —1, (6a) and (6b) provide

the similarity transformations of the form:

Tij (t) — 91’55 (93/2t) (7)

In other words, if r;;(t) is the solution of Newton’s

(or any other equivalent) equation for a particular
system, then the system obtained by reducing (8 >
1) the energy will expand in space and the motion
becomes appropriately slowed down, but the shape
of all trajectories are unchanged (homothetic trans-
formation). These scaling laws provide an eflective

way for deducing a number of system properties at
various energies, once the classical problem is solved

for a particular E. For instance, from (7) one eas-
ily obtains the third Kepler’s law for the planetary
motion. Similarly, (6d) determines all the semiclassi-
cal energies within the Bohr’s Old Quantum Theory,
once a particular (quantized) orbit is evaluated (nu-
merically or otherwise).

Many physical systems have a homogeneous
potential functions, of the type '

V =ZicjNij/rij kK #0 - (8)

at least in the asymptotic regions, rj; > 1 (in ap-
propriate units), like the ansemble of neutral atoms
(k = 6), charmonium systems (k = —1). For IDI5,

relativistic terms of the order O(rfj“) spoil the sys-
tem homogeneity. In many situations, however, these
terms, which give rise to the relativistic energy spht-
ting for the Coulombic systems and to the Laplace’s
vector precession of the planetary motion, may be 1g-

nored. This is particularly so in the positive energy
regions, (E > 0), especially close to the fragmenta-

tion threshold (0 < E << 1), when the motion at

large interparticle separations is relevant, as we shall
see later on.

Accounting all the similarities and differences
between the gravitational and electrcmagnetic inter-
actions, we may expect these features to reilect 1nto
the properties and behaviour of the corresponding
physical systems. We shall treat first the simplest of
them — binary systems.
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3. TWO-BODY SYSTEMS

I%noring for the moment the influence of an
eventual surrounding medium on the IDIS, as dis-
cussed above, the principal difference between New-
tonian and Coulombic binary systems is that, in the
absence of an ’antigravitation’, the former are gov-
erned by the attractive and the latter by both attrac-
tive and repulsive forces. Since the repulsive interac-
tion doesn’t support bound states, we shall confinc
ourselves to those Coulombic systems with opposite
charges and compare the properties of two-body sys-
tems at the negative energy, £ < 0.

At the level of binary systems, we notice an-
other remarkable common feature of the inverse-squ-
are-distance and linear forces: besides the highly spe-

cific 1/73 force, these are the only power-law inter-

actions which admit the classical solution wia ele-
mentary (nonelliptic) functions. The trajectories of

the motion of the equivalent mass around the ef-

fective fixed centre-of-force (at the centre-of-mass)

are ellipses in both cases. For the harmonic force,
F = —kr, the centre of ellipse coincides with equilib-
rim point, whereas the attractive centre-of-force for
the inverse square law lies at one of ellipse foci. It 1s
interesting that both £k = —2,1 cases in Eq. (8) can
be formally treated as the harmonic oscillator prob-
lem, after a suitable transformation of coordinates,
both within the classical (e. g. Broucke, 1980) and
quantum mechanical (e. g. Chen and Kibler, 1985)
formalisms. In the light of the fact that the har-
monic¢. force arises naturally within few-body IDIS,

as we shall see later on, this doesn’t seem an acci-

dental feature. - '_
Elementary mechanics shows that for the par-

ticles acting via central force, two-body problem can
be reduced to reduced mass g = mymsy/(m; + ms)

(harmonic mean) moving around the centre-of-mass.

In the orbit plane (which is fixed by the orientation
of the angular momentum L) one has generally three
integrals of motion: energy E, angular momentum
'L and the initial time moment t;. Since it is the
system with four degrees of freedom one expects an-

other constant -of motion. In IDIS one indeed finds
the fourth constant (e. g. Park, 1979)

A= X/r—1/m(p x L) - (9)

the vector which points from the focus towards the
apoapsis (see Fig. 2). This vector has been ex-
plicitely introduced by Laplace (1758), but the re-
sult had been already contained in the work by J.
Bernuli in 1710. Within the Quanium mechanics
of the one-electron systems this vector is known as
Runge-Lenz (sometimes Pauli) vector. The appear-
ance of the fourth integral 1s a direct. consequence of
the so-called accidental degeneracy, independence of
the energy on the angular momentum. An addition
of a noninverse square force removes this degeneracy,
and makes the orbit open and rotates A. The

Fig. 2. Keplerian orbit with the Laplace vector A.

presence of constant A ensures an additional sta-
bility of the planetary motion and greatly simpli-
fies quantum mechanical two-body problem (Pauli,
1926). Had not A existed, discovery of both Old

Quantum Theory and modern Quantum meckanics
would have been considerably delayed. Very few
physical systems are endowed with all possible con-
stants of motion (e. g. Kibler and Witnernitz, 1990)
and one of major preoccupations of the few-body the-
oreticians is the search for these missing integrals.

Flg 3. Two bodies moving along a straight line.

Having enumerated some cof the formal com-
mon features of both forces, we turn now to some
real physical systems. We consider first two-body
systems with equal masses: m; = mz = m and one-
dimensional case, see Fig. 3. Can such dynamic sys-
tems be stationary? For £ < 0 one has the so-called
free-fall motion, with masses bouncing off at the mo-
ment of the collision (we disregard ior the moment

the very mechanism of the encounter). According to

GRT acceleration of a gravitational mass gives rise
to an emission of gravitational waves. In this partic-
ular configuration the emission is forbidden since the

conservation of the (linear) momentum excludes the
dipole radiation. The only way to produce a gravi-
tationa! wave here is by rotating masses around the
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axis of symmetry, as indicated in Fig. 3 (quadrupole
emission). That the ’breathing motion’ does not al-
low the loss of energy is the fact of utmost impor-
tance in majority of cosmological models.

On the other hand, dipole radiation of charged
systems, due to the time variation of the dipole mo-
ment, is the most cornmon mechanism for producing
an electromagnetic field, at the atomic level. On the
macroscopic scale, one has dipole antennas, which
can be represented schematically by the masses in
Fig. 3, endowed by mutually opposite charges q,, q2.

The binary linear systems display some impor-

tant differences between Newtonian and Coulombic
systems, but the real systems to compare are atomic

and planetary ones and we shall dévote particular
attention to these problems. Because of the inter-
electron strong interaction the planetary model of

atoms (Percival, 1977) requires much more disperse
configurations than the corresponding celestial sys-
tems. Another possibility would be an atomic model
with many electrons revolving around the (heavy)
nu¢leus on the same circular orbit, as proposed orig-
inally by Bohr (1913) in his early papers on the
atomic structure, but we shall discuss this and some
other configurations in the next chapters.

- For the single-electron circular orbit Bohr dis-
covered a remarkable quanium rule for the possi-
ble energy levels (we use the so-called atomié units:
e=m=h=1) ' |

o En- :-,*_’1/2112’ 'n — 1,2,3‘, cres

with circle radius given by

where rg 1s the radius of the so-called first Bohr
orbit (ground state level): ag = 0.529 1072 cm.
In the further elaboration of the planetary model
(Bohr-Sommerfeld theory) elliptic trajectories are in-
troduced, bringing the model closer to our Solar sys-
tem configuration. It is interesting that Bohr ex-
cluded zero-angular momentum configurations (free-

fall case) from the very beginning, on the ground that

the electron and nucleus would collide otherwise. In
his theory the angular momentum quantum assumed

the values

< (10)

1=1,2,3,....,n (12)

for the fixed principal quuntum number n, whereas
the latter exact Quantum mechanics due to Heise-
berg and Schrodinger yielded e

| '.1 { "'.._"" 0,1, 2;‘...'.., n—--1 (13)

thatis, the only excluded from the theory were those
proposed originally by Bohr, circular paths with [ =
n. Although it is based on a quinte a different con-
ceptual basis than the Old Quantum Theory, with-
out reference to the notion of (classical) trajectory,
it 1s Instructive to see the way the quantum mechan-
ical description explains the ”decent” behaviour of
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the two-body system, within the Schrodinger picture,
for otherwise singular Coulombic potential problem,
with the pole at r = 0. For the ’free-fall configura-
tion’ in the hydrogen atom ground state (I = 0), one
can easily évaluate the associated de Broglie wave-
lengths at » =~ 0 and it'turns’ out that, e. g. for the
hydrogen ground state (E = —1/2au), A = h/p =~
8 1072 ag. . So it exceedes the (classical) electron
(proton) radius by two orders of magnitudes. -Hence,
the electron “doesn’t see” the nucleus as a parti-
cle.. Consequently, there is little. point 1In compar-
ing Coulombic (microscopic) systems with the grav-
itational (macroscopic) ones for the (almost) linear
configurations, for the underlying physical pictures
of the constituents behaviour appears quite different,
as described by radically different theories. There
are. however, situations where the atomic systems
are well described by the (semi)classical theory and
we shall devote our attention to these conditions. .

If the angular momentum quantum number {
is large, what may occur for large n, as seen from
(13), the classical trajectory picture becomes more
and more adequate and in the limit I{(n) — oo
(Bohr’s correspondence principle region) the classi-
cal and quantum mechanical results coincide. Since,
according to (11) dimensions of the atom become
rapidly enormous for large n, highly excited hydro-
gen-like atoms are difficult to produce in the lab-
oratory.” On the other hand, one does observe the
radio emission lines corresponding to n + 1 — n,
n ~ 100 transitions (Percival and Richards, 1975),
from:the interstellar regions, in particular from the
Solar corona, which implies that the atoms as large
as 1u can be found in the extremally rarefied space.
However, usually one still has | << n, so that these
planetary atoms should be compared with comets,
rather than with planets of our Solar system. Never-
theless, the fact that Bohr’s theory provides correct
energy levels for the one-electron atoms, makes from
the one hand, Coulombic interaction ” more classical”
than the other types of interactions and adds another
property to the analogy between the Coulombic and
Newtonian systems; on the other hand.

- - Being far from the two-body system our So-
lar system would be, from a formal point of view, a
poor counterpart of the one-electron atom. However,
because of the smallness of planetary masses, com-
pared with the Solar one (in full analogy with the

ratio between the electron and nuclear masses) and
the smallness of the gravitational constant G, the
Solar system can be considered as consisting from
binary subsystems, with the Sun as a common mem-
ber. Unlike the many-electron atoms, mutual inter-
actions between the orbiting bodies may be regarded
as small perturbations and the planetary motion as

quasiindependent (we shall consider some interesting

“examples later on). ‘What makes sense to compare

is the overall structurally fixed configuration of the

Solar planetary system with the hydro#en-like atom

in various excited states. One notices first that the
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highly excited atom has normally large eccentricity
orbit, whereas the planets as a rule are endowed with
very small eccentricity trajectories. These properties
come from the very mechanisms which the motion 1s
produced by: in the atomic case, it is the angular
momentum transfer rule: Al = =1 which forces
excitations of not too large ! states, whereas the al-
most circular orbits of majority of Solar components
testify about the formation of planets out of a ro-
tating primordial matter, as asserted by all realistic
cosmological models. - -

"'Now, what’s about the stability problem?
Atoms appear stable via the quantization rules,
which define well separated stationary orbits of the
electrons. There is no similar theory that the could

ensure stationarity of macroscopic systems like the

Solar one (but see later). The later appears long lived

‘more due to favourable initial conditions, which to-
gether with Kolmogorov-Arnold-Moser (KAM) the-

orem, ensures its existence within the cosmic time
scale. In fact, if these initial conditions are not met,

the strongly interacting bodies would distroy each

other, as a number of the Solar constituents have
already done. Two, the question arises: do the 1ni-
tial conditions plus these ”correcting factors” bring
about any regularity of the planetary structure, of
the sort of (11) for instance? Many attempts have
been made since antique times, to find out correla-
tions in planetary motions. One of the earliest trials
was due to Platon, who in his famous dialogue Thi-
mayos divided the whole Cosmos into two ’worlds’:
sub-lunar and astral ones. Ascribing to the former

spheres with radii (with the Earth in the centre): 2 =

V10 (aether), 5 ~ V100 (air), 10 =~ v/1000 (fire), he
asigned the following distances from the centre of
Cosmos — Earth (1), Jupiter (8 = 1 + 2 + 5), Sat-
urn (13 = 1+ 2+ 5+ 5), and stars (18 = 10 + 8).
Since Platon, this sort of speculative ”playing with

numbers” have never seased and a number of rules
(regularities) have been proposed. The most famous

rule is the well known Bode’s ”law”, which asserts
that the mean distances of planets from the Sun can

be given by the relation (in appropriate units)

g, =044+03x2" n=0,12... (14
Now, apart from the constant 0.4, (14) looks like
an ’inverted quantum condition’ (11), ie one has an
exponential rather than the power "law”. Recently,
an attenpt has been made to set up a corresponding
'quaritum rule’; analogies to (11) fci the planetary
radii, inspired by an ancient idea of Philolacs (Tomic,
unpublished), in the form (in astronomical units)

(15)

Of course, without an underlying thery, all these
relations remain in the realm of speculations, but an
analysis of the mechanism of creation of a Solar-like
system might reveal preference to the regularities like

a, =n%/215, n=12,..

(15), just as the present theories explain otherwise
curtous fact that all planets lie in a common plane.

The principal difference between, say, Bohr-5o-
mmerfeld quantization rule, which appears as uni-

versal law, being expressed by universal constants of

Nature: %, e, m and relations type (14) or (15), is
that the latter are only locally (and approximately)
valid, i. e. they are expressed in local units. In
other words, if there were celestial (cosmological)
unit ‘analogies to the abovementioned atomic-scale
universal units, one could meditate on a sort of cos-
mic quantum mechanics. Strange as it sounds, such
attempts have been made and here we shall expound
briefly some interesting results.

Following an asserted evidence for the so-called
cosmic redshift quantization (e. ¢. Tift and Cocke,
1984) a number of theoreticians have been making
attempts to establish a kind of cosmic quantum me-
chanics (e. g. DerSarkissian, 1985), by constructing
a gravitational Planck constant, an analogy of the
ordinary (atomic scale) Planck constant A. Thus a

proposition is offered (DerSarkissian, 1984)
ko~ (14 V3)°m,(Av)?/Ho (16)

where m, is a typical cosmic mass, Hg 1s Hubble con-

stant and Av is the velocity increment for adjacent
red-shift states, which is considered constant in the
so-called Tift interval rule and is assumed to acquire

value of 72 km/sec, or a fraction thereof. This yields
a numerical value of B ~ 7 107* ergsec, for my, =

1044 g, Hy = 50 km/secMpc and Av = 12 km/sec.

A search has been made for ” Bohr’s orbits” in dou-
ble galaxies (DerSarkissian, 1986) with an indecisive

result. .
Yong-Zhen and Zu-Gan (1985) proposed a set of

actions proper to gravitating systems

R = (he® /20R2)Y/ 8 (P 127G HY) (17)

where the scale parameter s acquires values 1, 2, 3
for galaxies, stars and larger asteroids, respectively.

Their formula (which reduces to the ordinary Planck
constant h for s = 6) however, has been criticised by
DerSarkissian (1986) on the grounds that it doesn’t
ensures the conservation of the a:guiar momentum
as the cosmic time evolves. In order to remedy this
unpleasant feature of the many-level universal con-
stant Kaminisi and Arai (1987) have proposed an
alternative expression

B = [R(H/2GeM3 )P 8(2G-ME Y2

which remains constant and reduces for s = § to well-
known value of Planck’s action, whereas for s = 0

(18) should refer to the very Cosmos, with mass My .
What is rationale for these highly speculative
» astro-physical” models, including the very idea of

» Cosmic Quantum Mechanics”? One of motivations,
though implicite one, is the current interesi in the
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so-called cosmic strings (e. ' g., Tassie, 1986; see
also Brandenberg and Turok, 1986). The 1dea is
that celestial objects have evolved through a series of

(hiearchical) breaking of rotating cosmic strings, the
latter being a sort of topological defects of the un-

derlying space-time manyfold (e. ¢g. Kibble, 1987).
This sort of forming cosmic objects ensures the rela-
tion J = KM?, where M is the mass of the object

and K a universal constant, which acquires a numer-

ical value & 1071% g~lem?s~! (comparable with the

corresponding constant in the particle physics string

theory). The breakdown of these gigantic ”quan-
tum objects” presumably gives rise to the creation
of stars, galaxies and supergalaxies (but see Sivaram,

1987), thus bringing the cosmic-scale processes down
to: the atomic scale models (where Coulombic force
dominates, instead of the gravitational one).

-~ Parallel with these ”observational-theoretical
conjectures” there is a search going on for inferring

from the astronomical evidence an underlying fractal
structure of the Universe (Einasto af al, 1988, Saar,

1988: but see Martinez and Jones, 1990). This idea

has been pushed to its extreme by Oldershaw (1989),
who has proposed the so-called self-similar cosmo-
logical model, which correlates physical parameters
from the atomic up to galactic- scale systems. It
should be mentioned, however, that all these hierar-

chical structure inferences are of statistical-observa-
tional nature and unless a firm theoretical ground is

established, they are deemed to remain interesting
speculations only. One way towards an unifying pic-
ture would be a kind of unifying string theory (both

the particle physics and cosmic ones) but this would
go beyond the scope of the present article. We turn

now to the more serious problem — the three-body
- systems. '

4. THREE-BODY SYSTEMS

The full three-body problem has not been solved
neither within the classical nor quantum mechanics.
Though in the latter case there are now a number
of methods, like the Fadeev equations, for example,
- which solve the problem in principle, the long-range
nature of the inverse square law force makes all these
approaches still far from being truly operative.

- Within the classical dynamics three-body prob-
lem has been attacked first in the celestial mechanics,
‘notably. by Lagrange, who has formulated the prob-
‘lem rigorously and found a few particular solvable
cases. In the realm of atoms, the problem is first met
in attempting to evaluate the energy spectrum of the
two-electron atoms, as it was done for the hydrogen
like atoms — the famous heltum problem. In connec-
tion with the dichotomy - classical vs quantum me-
chanical pictures, the problem has two aspects: (a)
the calculation of the three-body motion with arbi-
trary initial conditions (the general solution): (b) the
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choise of initial conditions which ensure a reasonable

- stability of the system. As we mentioned above, the

task (a) has not yet been achieved in either fields an-

alytically for the gravitational and electromagnetic
forces, though with the aid of modern computers nu-
merical solutions are easily found. As for the point

(b) the.conceptual difference between the classical

and quantum theories has separated the very prob-
lem posed: in the former one seeks appropriate initial
values, whereas the quantum mechanical description
of the atomic states requires an imposition of the
boundary condition for the (stationary) states. Thus
the seemingly unsurmontable problem of explaining
the identity of all atomic systems with identical con-
stituents has been solved by eliminating it as such.
Nevertheless, if one leaves aside ground states of
the atoms, which are outside the realm of classical
picture and turns to those states where the notion
of classical trajectory gains meaning, though only
approximately, we can find a lot of common features
of the three-body gravitational and electromagnetic
systems, as we shall see for a number of cases now.

Lagrange’s cases

These refer to the configurations which can be re-
garded as quasi two-body problems. We shall distin-
guish three classes of configurations: linear, planar
and three-dimensional. |

(1) Collinear case. Let three masses and charges
(m;, ¢i),1=1,2,3, besituated on a common straight
line, as shown in Fig. 4, which we take to be oriented
in the three-dimensional space with a unit vector n.
If the coordinates in the centre-of-mass system are
zi, t =1,2,3, one has

rmyzy = 0

(19)

Fig. 4. Collinear Lagrange’s configuration for ma-
sses or charges.

One can easily find the ’stationary configuration’

(20)

by rotdtingt_hé system around the axis through the
origin and equating the centrifugal and centripetal

Ed;a:;(t) =0, a — const.

forces: gravitational (¢; = 0) or Coulombic (g; #0).

Thus one determines constants «;. For a negative
total energy E one obtains in such a way bound state
configurations, with three masses rotating like a rigid
body (Grujié, 1988; Gruji¢ and Simonovic, 1990; see
also Gruji¢, 1982, and Simonovi¢ and Gruji¢, 1987,
for alternative methods). For E > 0 and all bodies

moving away from each other, one has the so-called
fragmentation process. In the latter case the problem

is still beyond the analytical solution, but for a small
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Fig. 5. (a) Potential energy surfaces for the electrostatic (Simonovi¢, 1993) three-body systems.

positive F an accurate approximation can be found
in the region: ||EFz;|| << 1 (in appropriate units; and
we shall omit index 1)

z' = yt2/3 (21)

with constant v independent of energy. That the
same kinematics holds for the fragmentation of Cou-
lombic systems and the expanding Universe within

Friedman-Robertson-Walker (FRW) cosmological

model (e. g¢. Thatcher, 1982) should be no sur-

prise, for in this part of configuration space the mo-
tion is determined by the shape of the potential only,
which is the same for both forces. If the energy is
small receeding bodies must move in a highly corre-
lated manner triple escape to take place. The po-
tential function surface has a saddle pont, see Fig.
95, so that motion along the straigat line connecting
unperturbed bodies {(leading configuration) appears
unstable, whereas transfersal modes suppnrt stable
(oscillatory) kinematics.

- One can estimate probability for fragmentations
of cuch systems, at small energies, by calculating so-
called threshold exponent K in treshold law

Px ERX E — 40 (22)

K depends on masses for Newtonian and on masses
and charges for Coulombic systems. Mention should
be made, however, that fragmentation processes are
very rare in celestial mechanics, whereas they are 1im-
portant in laboratory — and astro — physical systems,
like ionized gasses and stellar atmospheres. Near-
threshold processes are important for chemical re-
action too, but there they are governed by differ-
ent type of forces, with potential asymptotics of the

form r~%, k > 6. It is interesting, however, that
the same formalism furnish threshold exponent In
(22), which will depend, additiczaliy on & (Grujié
and Simonovié, 1988). This makes power-law forces
a wider class of interactions with a specific three-
body behaviour energies.

As is well known general solution for three-body
problem is still beyond our mathematical tools. One
resorts, therefore, to specific configurations, endowed
with particular symmetries. These symmetries im-
ply, in their turn, specific correlations between mov-
ing objects, what greatly simplifies mathematical
analysis. Another type of tractable systems is that
of a third body moving essentially at g:=z% distance
from the rest of the system, so that the perturbation
theory applies. We shall call the first class correlative
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Fig. 5. (b) Potential energy surfaces for the gravitating (Gruji¢ and Simonovi¢, 1990) three-body systems.

and the second pereturbative systems, respectively.
Of course, gravitating systems possess another class
of configuration, planetary ones, which is absent from
the atomic realm, due to strong interelectron interac-
tion. Yet, one may define planetary atoms, too, with
specific features, as we shall se later on. Now, we
shall expound a number of common features of both

kinds of systems, for the collinear Lagrange configu-
ratlons. '

(a) Coulombic case.

In Fig. 6. we show a general plane configura-
tion for a Coulombic system, with particle 2 and 3
of opposite charge with respect. to particle 1 (Grujid,
1988). All three particles move along Keplerian or-

bits around the common centre of mass, which co-

incides with a common focus. We shall confine our-
selves to the simplest case of the (common) eccentric-

ity of ellipses € = 0 (circular orbits). If the particles
are slightly displaced from the equilibriom positions,
they may follow closed (in the rotating frame of refer-
ence) orbits around equilibrium positions. We shall
restrict ourselves to those perturbation orbits which
lie in planes perpendicular to the common axis, as
shown in Fig. 7 for the system [He’Y+xt 4 pu~]. All
particles them move along circles, wing particles in

the opposite sense with respect to that of the middle
body. In the zero approximation the system forms
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Fig. 6. Three body plane configuration (Grujié,
1988).

a rigid body, rotating around two axes. The system
may be treated within Newtonian dynamics, but here
one should mention that according to quantum me-

chanical formalism the circular motion around the
rotating axis comes from the superposition of two

linear oscillatory motions, mutually perpendicular
(that is, restriction to a linear oscillation 1s not pos-

sible for this axially symmetric system). For that
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Table T Some characteristic parameters for three-body Coulombic systems (see text) (Gruji¢, 1988).

Number System w(au) - w/Q K g

1 ut + em + ut 2.188-10+%  23.51 23.28 1.010

9 e~ + pt + e- 5.221 ©1.160 1.131 1.0253

3 p+ 4 +p 4.132-10*  5.000 4.806 1.0404
4 e~ + et 4 e~ 9 2 1.887 1.0601

5 He*t + n= + pt 2.241 2.246 2.66 1.1843

reason one talks about rovibronic motion, as 1in case
of triatomic molecules, for instance. If one desig-

nates angular frequency around the fixed (labora-
tory) axis €2, and that around rotating axis w, cal-
culations reveal that the ratio w/§2 assumes values

close to those of threshold exponent K from (22),

as numerical results in Table I show. One thus ar-
rives at an (approximate) characteristic constant for

three-body Coulombic systems 8 = (w/S?)/ K, close
to one. As can be seen from Table I the gratest
value belongs to the (asyymetrical) system 5. Also
one notices comensurability of both frequencies for
three equal masses and (absolute value) charges par-
ticles (system 4), what implies closed orbits (within
approximation used). |

Table II Characteristic parameters for symmetrical Newtonian systems (see text).

7 0 ' 1

w' [§2 1 1.549
w'’ 1 1.630
(W' /QQ)/K 1 1.053
(W”"/Q)Y/ K 1 1.108

(b) Grawvitating systems

We treat the simple case of symmetrical system,
with outer (wing) bodies masses equal (mz = ma3)
(Grujié¢ and Simonovi¢, 1990), and define ratio n =
m2/my. One pbtains two frequencies around (rotat-
‘ing) equilibrium points: in the plane of rotation (w")
and perpendicular to the plane (w’). In the plane

wing bodies execute small elliptical orbits. In Table
II we present numerical results for a number of mass
ratios. Comensurate ”in plane” and §2 frequencies
appear at n = 2.53, but no truly pertodic motion

(reentrant orbits) is possible for finite masses. As
can be seen from Table II, however, this 1s almost
the case for 2.5 < < 3, and exactly at 7 = oo (re-
stricted three body problem, e. ¢g. Bruno, 1990). In
any case calculations shows that frequency ratio is a
slowly varying function of 7.

Fig. 7. Three-body Coulombic (quasi)collinear sy
tem (Gruji¢ 1988). |

2.93 3 00
1.9267 2 2.828
2 2.0716 - 2.883
1.0601 1.0604 - - 1.057
1.1004 1.0984 1.077

Configuration like that in Fig. 7 have been used
successfully for describing doubly excited two-ele-
ctron systems. The question arises, however, if there
exist gravitating systems with configurations like
that. In principle, a planet of our Solar system might
have a twin-sister, rotating for 180° out of phase
around Sun, and thus be invisible from the oppositly
situated planet. Such a twin-Earth used to be imag-

ined in science fiction (Planet X, see e. g. Goldstein,

1981). Considering small eccentricity of our Earth
the formalism of accounting small perturbations, as
exposed above, could be used to estimate semiax-
ies of ellipses around equilibrium points, which still
prevent phantom-planet from being observed from
Earth. Space travels have made such investigations
unnecessary, of course.

(ii) Plane and three-dimensional conﬁgurétions. .

With respect to Newtonian — Coulombic system
parallel nonlinear bound systems appear much more
interesting. Unlike two-body systems where difler-
ence in interaction was entirely in strength of forces,
three-body systems manifest truly an essential differ-
ence between Coulombic dichotomy and Newtontan
all-attractive interaction. The appearance of repui-
sive interaction- precludes a class of bounded config-
urations of Coulombic systems for a plane-restricted
kinematics, as compared with gravitating ones. The
situation appears opposite for a nurnber of out-of-
plane motion. This 1s best illustrated for "rigid-body
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configurations” r;; = const, i,j = 1,2,3. Both kind
of systems may have stationary configurations by ro-
tating around axis through the centre-of- mass, per-
pendicular to the plane of configuration (Lagrange
configurations), but Coulombic systems have Lag-

rangian triangle degenerate into straight line, be-
cause of two-body repulsion, which forces two of
three bodies to locate on the opposite sides of the
third one. Nothing of this sort happens to gravi-

tating systems and a (small mass) third body may
safely place itself at a (stable) Lagrangian point, out
of line connecting two other (massive) bodies (hke
Troyans asteroides, for instance). On the other hand

Coulombic system may have additional rotation axis
in the plane of the configuration, like the so called
rotor-like Langmuir’s helium model. We shall come

to this later on. | |
In the case of one massive particle and two elec-

trons, like systemn 2 in Table I, one speaks of helium-
like atoms (ions). Figure 5 corresponds then to the

so-called synchronous. (mode) configuration or kine-
matics, with particle 1 (a — particle, for instance) at
the origin (centre-of-mass) and two electrons moving

around in phase (that is out-of-phase for 180°). This
is obviously just a special case of the general collinear
configurations, considered above. There are, how-
ever, other types of kinematics, with specific symme-
tries, which ensure periodic, or reentrant orbits. One
of them has been studied recently (Gruji¢ and Si-

monovié¢, 1991) and we shall expound it briefly here.

Fig. 8. An asynchronous (mode) two-electron sys-
tem (Gruji¢ and Simonovi¢, 1991).

This is so-called asynchronous (mode) model; where
electrons move out-of-phase, with one particle at per-
thelion while the other 1s at aphelion, and vice versa
(see Fig. 8). It is believed these configurations ap-
pear as doubly excited-helium atoms (or helium-hke
ions). One can evaluate (descrete) spectra of such a
configuration and compare that with standard syn-
- chronous. (so-called Bohr-Sommerfeld) model (Grujié
and Simonovié, 1993). .1t is interesting that very odd
¢onfigurations may arise within the asynchronous
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model, with particle orbits very different from Kep-

lerian ones (Simonovi¢, 1993).

As for the gravitating systems no strict analogy
with Coulombic case appears possible. The only way
to fix the central body at the origin is to put its
mass very large (in principle infinite). But then,
no correlations between light bodies arise and one
may, by a suitable choice of initial conditions, ar-
range any sort of kinematics, including that of the
asynchronous helium model. On the other hand, if
one deals with finite-mass (e. g. equal-mass) sys-
tems, a more complicated kinematics would devel-
ope, with central body moving out from the centre-
of-mass. In that case, however, the analogy with
atomic case would be lost, due to the equality of in-
ertial and gravitational masses. Anyway, as far as
we know, no such calculations have been carried out
for gravitating systems. On the other hand, comph-
cated orbits may be found within the synchronous
mode see Fig. § in Broucke et al., 1981).

Another interesting class of plane configurations
has been investigated by Broucke et al. (1981). The-
se arise, in fact, from the collinear configurations, but
with large amplitude deviations from the basic con-
figurations. However, when viewed from the labora-
tory reference system, they reveal an unusual type of
correlated motion, as shown 1n Fig. 9.

Y

Fig. 9. Reentrant orbits for equal mass gravitating
three-body systems (Broucke et al., 1981).

In principle, this type of correlated motion may
be found in other types of interactions, including that
of Coulombic one. Some calculations along these
lines are 1n progress.

Finally we come back to the Langmuir’s helium
model (see Fig. 10), the only truly three-dimensional
configuration we have considered so far. As in the
case of (quasi)collinear case, it is possible to carry
out an analysis of small deviations from the basic
(skeleton) configuration (Dimitrijevi¢ and Gruji,
1984) and evaluate the compléte rovibronic energy
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Fig. 10. (a) Langmuir’s model for helium atom.

spectre. It is interesting to note that recently an odd
effect has been discovered for systems with Lang-
muir-like configurations. Namely, Poirier (1989) has
found that for a model system with the heavy charge
0.459 < Z < 1 (instead of o — particle) unsymmetri-
cal configurations appear possible, with electrons dif-
ferently displaced from the origin. This phenomenon
turns out to be realistic one, for systems like [/~ +
a + al, when the finite-mass effects are accounted

for (Gruji¢ and Simonovi¢, to be published). In the
case of gravitating systems, bodies circling around
the third, massive one, cannot remain at rest 1n their
own body-fixed frame, because of the absence of mu-
tual repulsion. The stationary equilibrium may be
achieved, however, by making the two-body subsys-
tem rotate about their own (rotating) axis, as shown
in Fig. 10(b). If the closed orbit (as viewed from
‘the comoving reference system) 1s sufficiently short,
(compared with the imagined orbit of the centre-of-
mass), it may be approximated with a circle and the
entire three-body system can be considered to be a

rigid-body structure, with two axes of rotation, one
fixed in space and the other rotating about the first.

It is worth mentioning, within the present con-
text, that the well known Russian mathematician,
physicist and astronomer A. Friedman, was engaged
at.a time in constructing a three-dimensional helilum
mode] (see, e.
which in modern terminology would correspond to
the planetary atoms, with the outer electron moving
along a circle and the inner one following another

small circular orbit, in a plane (on the other side of

the nucleus) perpendicular to the first electron or-

bit plane. This model has been abandoned, as were
many other proposed at the dawn of (Quantum me-
chanics, but unlike these latter, has remained largely
unknown to the wider physical community. As far
as we know no attempt to investigate this model for
gravitating systems has been made so far.

Though gravitational effects does not show up in
the realm of atoms, where Coulomb force dominate,

g. Efremidze and Frenkel, 1989),

/4%

Fig. 10. (b) an analogous model for gravitating
bodies.

mass-effects may be very prominent in determining
bound-state properties and collision processes featu-

res. The latter are evident from Table I (threshold
exponents in rows 1 and 2, for instence). Masses
(better to say mass ratios) influence in a decisive

way whether a three-body (Coulombic) bound state
is possible or not. Thus for the case of systems with
unit charges it turns out that if a bound state of a
charge in the force-field of a binary system is to be
formed (this type of system corresponds to the re-

stricted three-body problem in celestial dynamics),
the mass-ratio for the two-body system must not ex-

ceed a threshold value (Frolov and Bishop, 1992).
This is explained by the (in)sufficient polarization
force, induced by the third particle. Only if one of
the binary-component is enough small, third body
can induce a sufficiently strong dipole moment of the
binary, so that a binding potential appears. This sit-
uation is just the opposite what one would expect
in purely gravitating systems, where within the re-
itricted three-body systems equal-mass binary binds
00.

Polarization force is present in ion — atom inter-
actions. Particularly it appears important for small-

energy electron — atom collisions, or Rydberg states

of atomic systems. It may be visualized as a defor-
mation of the electron cloud around the nucleus, by
the Coulomb force of the impinging, or excited parti-
cle. Although polarization potential rarely binds, 1t
plays vital role in the so-called resonant effects and
exerts a noticeable influence on the energy spectrum
of Rydberg states.

Nothing of this sort appears with gravitating pla-
netary systems, like our Solar one. The cicsest anal-
ogy would be an interaction of a small satelite with
a planet endowed with a ring, like Saturn. But the

mass ratio of Saturn, for instance, to the ring mass
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appears so large, that an influence of the deforma-
tion of a ring due to the satelite presence is negligi-
ble. On the other hand deformations due to gradi-
ent of the gravitational force do play crucial role n

the stellar binaries, as the so-called Roche lobes (e.

g. Martinov, 1965) testify. An atomic analogy with

(fluid) mass transfer through the inner Lagrange po-
int from one to the other binary would be so-called
charge transfer. This occurs, for instance, between
two oppositly charged ions, like H~ and p

p+H- —H+H (23)

There is, however, one important difference, as to
the mechanism which underlies the exchange of elec-

trons and neutral (fluid) mass. The first is governed
- by quantum mechanical discrete change of states,

with one of electrons in the (23) jumping to the pro-
ton, while the remaining atomic electron goes down

to the hydrogen ground state. The mass transfer
~ from one to the other Roche lobe, 1s described, on

the other hand, by the classical (discrete and fluid)
mechanics, which prescribes a continuous flow.

More close analogy appear between a planet cap-
turing in passing a satelite from another planet and

an electron capture by an ion from a Rydberg atom.

Both processes may be described by the classical dy-

namics, in the atomic case at least in an approximate
manner. '

5 CONCLUDING REMARKS

As we have tried to show, under normal circum-
“stances gravitational and electrostatic system display
a number of common features, but also some essen-
tial differences.

few peculiar properties of gravitational force; (a) the
unique gravitational charge. (b) equality of gravita-
tional charge and inertial mass; (¢) extremely small
strength of the gravitational force. The first prop-
erty precludes gravitation from taking part in shap-
ing the structure in the microworld domain, whereas

the third excludes competition between gravitation
and other forces, in particular with Coulombic one.

Within the (quasi)two-body systems both types
of interactions provide similar structures, but with
an increase of number of constituents, disimilarities
become more prominent. Nevertheless, many formal

common features enable one to make use of formal-
ismn developed for one type of interaction 1n treating

systems with the other force. Moreover, a number
of features displayed by one type of systems, often
very peculiar, may be expected, mutailis mutandis,
in other systems governed by different force.

Of course, as mentioned above, there are situa-

tions where classical and Newtonian formalisms fail.
These are atomic systems with small quantum num-

bers, where Schrodinger theory applies, from the one
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These latter mainly come from a

side, and strong gravitational fields, when Einste-
inian theory appears indispensable, from the other.
The domain of ultrastrong gravitational fields, where
presumably a hypothetical theory of quantum grav-
ity must be applied and where the present sort of
parallel would become superfluous, is out of scope of
the present overview.

The principal aim of this review, besides a num-
ber of heuristic implications revealed, is to draw at-
tention of researchers in both fields, atomic physics
and celestial mechanics and astronomy, to methods

used in the other field that could be of interest to
their own research. If we have succeeded 1n mak-
ing those researchers aware of these possibilities, we

would feel our task worth trying.
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YIK 52-423/-425
[Ipe2nedHu uaaHak

HanpasiieHa je KOMIIapaTHMBHA aHaJIU3a CHUCTEMa
ca MaJIUM 6pojeM KOHCTMTYEHATa ca I'paBUTAllHOHOM
U EJICKTPOMArHETHOM HMHTEpPAaKIIMjCM, CA HAIJJaCKOM
Ha CJIMYHOCTMMA M pa3ljiIMKaMa peJIEBRHTHHUX Kapak-

TepUCTUIHUX ocobuHa. [IpuKasaH je CKOpalllbM Ha-
npedak y M3ydasarmy BUUIECTPYKO [OOYINEHHX aToMa,
Ka0 M MJIaHETapHUX HeDEeCKUX CHUCTEMa M JTMCKYTO-
BaHEe CY HEKe MHTEPECAaHTHE CINYHOCTH.
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