Bull. Astron. Belgrade Ne 145 (1992), 17 - 24.

UDC 520:51-72;-73
Original scientific paper

DISCRETE FOURIER TRANSFORMS OF THE SERIES WITH
- RANDOMLY MISSED DATA: EXPERIMENTAL TESTS

'D. Djurovié

- Department of Astronomy, Studeniski irg 16, YU-11000 Belgrade, Yugoslavia

~ {(Received: January 10, 1991)

. SUMMARY The errors of the period (P), the amphtude (A) and the phase (Ph)
of the sinusoidal . srgna] computed by discrete Fourier transforms (DFT) formula,

- applied to the series wnth randomly missed data, have been examined.

In the case of the umform probablhty distribution of missed data, the error of P
is negligible, while the error of A is increasing function of A and number of missed

data N. For N gwen the ratio ¢ = 04 /A (0a-st.dev. of A) is constant. In fact

A.

1. INTRODUCII()N B

The Fourier transforms (FT) of a function z = z(t)

into the function X = X(f), where the variables ¢

and f are usually considered as time and frequency,
are described and discussed in many books and scien-

 tific papers (see, for example, Bracewall, 1958; Black-

man and Tukey, 1958; Deeming, 1975; etc) In this

papér, however, it will be supposed that a reader is
farmhar with the theory of the FT.

In the cases when z(t) is presented in the form

of the equally spaced data series z; = z(t;), the con-

Iiseqqences of the practical restrictions, as a limita-
tion.of the interval of ¢ (leakage) or a digitalisation

‘of the function (aliasing), can be theoretlcally pre-
dicted. However, when the series {z;} is composed

of unequally spaced data that is more complicated

(see, for example, Bloomfield, 1970; Vanicek, 1971;

q = q(N ) Consequently, the phase standard deviation ((Tph) is mdepependeut on

Meisel, 1978; etc), sometimes-impossible.

| Let us remember that the leakage limits the
frequency resolution of the FT method, the aliasing
enlarges the computed amplitude A(f ) at the given

frequency f. So, 1nstead of the true amplitude A(f)
we obtain: S

Ac(f)= A+ }jA(f + 2ka) (1)

where fN 18 known as Nyqulst frequency Since f €

[ sz:fN} ‘the frequencles f+2kfn 2 fn and

f=2kfn < —fN.

- Consequently, if the elementary mterval At =
1/2 fn is so small that fy is larger than the frequency
of any component really existing in the polyharmonic
process z(t), each A(f+2kfn) = 0. Therefore, their
sum in (1) should be zero or the:amplitude :A¢(f)
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would be free of aliasing.
When a series {z;} is already given 1t can be

impossible to choose fn sufficiently large to avoid
the aliasing, but it is important to know whether

Ac(f) = A(f) or Ac(f) # A(f). For that the
knowledge of the upper frequency component in z(t)

is needed. _ o o
In the discussion the above it is imposed that

Ac(f) represents a mathematical expectation of the

computed amplitude. .
_ In practice, instead of the true Fourier trans-

form X (f) we compute the function X, (f) defined
by the formula:

Xal(f) = Y z(tj)e (2)

Formally. X, (f) can also be represented as:

where :

gn(t) — 5(t — tj),

5(r) being well known Dirac’s function.
Since the Fourier transform of the product

g(t)z(t) in (2a) is the convolution of their Fourler

transtorms Go(f) and X(f) (respectively), W€ €% maximum in the periodogram.

write:

where:

Culf) =S em% @
J=1 .

G, (f) is called the spectral window.
The formulae (2)-(4) are valuable for equally

as well as for unequally spaced t.

In the cases when {; are equally spaced, the

sum Gn(f) does not depend on %;:

S .
Gn(f) = S;?n(?:ffmt))eﬂ(mwm )

where t; = jAt. So, for f given the amplitude and

phase modulations can be predicted.

In the cases when t; are unequally spaced that

is impossible because G (f) depends on the t; distri-

bliged to
decide between the reconstruction of the missed data
(by the interpolation and smoothing techniques), wi-
th a risk to create the pseudo-harmonic components
or to modify the amplitudes and the phases of the
components really existing in the process z = z(t),
and the computation of the periodograms with the

bution. In practice, however, we are often o
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sinusoidal si

(2a)

given original data. The last procedure introduces

the errors whose estimation represents the task of

our present work.

In this paper we have examined the errors of

the computed period, amplitude and phase of the
ina.l only for the case of a uniform prob-

ability distribution of missed data.

o DFT PERIODGRAM DISTORSIONS
FREE OF ALIASING _ -

Let the series {z;},i = 1,2, ..., 1000, be computed
by the formula: '

2= Asin(2nfi+3) (6)

" for all combinationsof A =1,10,100and P=1/f =

5 10,20, 25, 50, 100. Beside {z;}, the series of N dif-
ferent random integers Iy € (1, 1000}, k = 1,2,..., N,

with a uniform probability distribution have also

" From a given series {z;} the data having an

index j = Is(k = 1,2,...,N) are missed. So, the se-

ries with 1000 — N unequally spaced data (hereafter:

 incomplete series) are obtained. These series are

transformed by discrete Fourier transforms (DFT)

" The computation programme,tested on the

complete series, gives Pc, Ac and Phc equal to P,

To study the stability of Pc, Ac and Phc

" when a composition of N missed data changes, for
‘fixed A, P and N, 30 difterent series of random 1n-

tegers have been %fnerated and the periodograms of
incomplete series have been computed. So for A, P
and N given we disposed the set of 30 values. Pq,
Ac and Phc. These data are used for thée compu-
tation of the standard deviations op, 04 and opy,
respectively. R S,
" The above computations have been performed
for each combination P, A, and N = 100,200,..,, 900.
" From the results obtained we have remarked
the following: T o
1. In the limits of the computation accuracy
(£0.05 of the corresponding units) the periods Fc
are equal to the corresponding exact values (op = 0).
In the other words, the bias AP = P — P; and ran-

- .

dom fluctuations of Pc are negligible. _

" 9. The amplitudes A are biased with respect to
A (Table 1). The bias AA=A—Ac is independent
neither on P nor on N. Small difterences of AA
for three given amplitudes are now unsufficient for
any valuable. discussion on the mutual dependence
between AA and A, but as 1t will be seen later on

this dependence is not assumed.
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Table 1
The difference AA :A - .Aef?-*e':: S
for A =1,10,100: mean values over

the set of N = 100 200
— . .

P

9
10

20

L

25
o0

190 %

200

- 300
- 400

000

600

700
800
900

' s £
', -hl :FI‘ i
. .5,
‘61" . wy .
1

2.9

Flg 1 Standard devnatmns of the amplitude (O’A) and the phase t‘aph) as functlons of N The amphtude

A=100.

.,900.
e T
04 : 07 08 §
05 06 0.9 !
04 06 0.7
04 06 0.6
04 06 0.9

0.4

0.6

0.4

] ries wnh respect to the mean va
tioned set of 30 series (P, A, N fixed) are larger for

| A and N larger (Table 2). Since they do not depend

'3 . Random fluctuations of Af of mdn&dual se—t
ue over the men-

on P, in the Table 2 mean o4 for six P analyzed are
presented For A =104 < 0.05. Therefore, it 1s

negligible with respect to the data accuracy and not.

presented in the T'able2. For A = 100 the standard:
deviation o 4 is also presented in Fig.l as a function

 .~: of N.

4 . Like the standa.rd deviation Ca, 0'ph 18 also

: mdependent on P. It’s dependence of N is also well
- pronounced (see the Table 3 and Fig.1, where op,

- for A = 100 is plotted).

- . Table 2 .
Standard deviation of Ac(o4) for A = 10 and A = 100:

mean values for the set of six P consndered o] - standard devnatlon of a'A

TA=10

gaA

0.1

00

02
02
04
04

07

4001

o

0.0

0.0

00

00

00

0.0

0.1

800

1200

* A= 100
A __0'1 _
0.7 0.1
1.1 0.2
14 - 0.2
1.7 0.3
2.2 03
2.8 b 0.9
3.6 0.5
4.1 0.4
6.3 0.8

0.0

400

' 800

]

<

%%
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Standard devnatnon of Phc(crph) for three amplitudes

o consxdered above 0'1 - standard deviatmn of OPh.

0'1 - standard deviation of 0,4

10 100

01 OPh 01

0°1 0°4 0°1

0.1: 0.6 0.1

- 0.2 1.0 0.2

0.2: 1.0 0.2

0.1 1.3 0.2

0.2 1.9 0.3

0.4 2.7 0.4

0.2 3.9 0.3

"N epn . '_.0'1 .. TP
100  0°7  0°1 04
200 11 01 ' 0.7
300 . 14 0.2 0.8
- 400 1 6 0.2 1.0
- 500 Y. 1 | __0 2 '; _'_”1.3
600 2.5 0.6 ' 1.4
700 2.7 0.4 1.8
800 4.2 0.5 2.6

900 5.9 0.9 , --_~3-.8 |

For A = 10 and A = 100 ractlcally the | same,

opn are obtained. Under the i impression of the kno-
wn fact the presence of the accidental errors in z;

- reflects on the phase accuracy (it decreases with am-

- plitude decreasing) the last results could be seen un-
expected. However, 1t concerns an another matter.

Since for N given the ratio c4/A is practlcally the
- same for both amplitudes (this later is supplemen-
- tarly argumented by the results presented in the Ta-
 ble 4.), it is not surprising that op, for the corre-

sponding N are equal. Namely, from the DFT for—
mula following relation can easily be deduced:

opn 57020674 (251
opn ~ 57,2962 (2-2) (7)

For A = 1 coresponding op; is larger for a
factor ¢ = 1.6.

5 . The phase bias is not identified.

3. DFT PERIODGRAM DISTORSIONS IN
THE PRESENCE OF THE ALIASING

To study the aliasing effect in the periodogra-
ms of the series with randomly missed data (also the
case of uniform distribution) the above computations
for the series {z; } have completely been repeated for

the series {y; } generated by the formula:

yj = loosm (2wa + )+ Bsin (27f'7), (8)

where B =10, 50, 100, 200 300, 400; P=1/f=5, 10,
20, 25, 50, 100 (as in the precedent paragraph) P =

1/ f’ = P/(P + 1), Therefore, the frequency f' =
f + 1 is that of the first aliasing term in (1). How-
ever, since At; = t; — t_,..l randomly fluctuates,the

equation (1) is not appropriate for the estimation of

20

A(f ) The other one is not known. Because of that
for the practical apphcat.lon of DFT on the series

with randomly missed data it could be useful to es-
timate experimentally the errors of P, A and Ph of

the signal z(¢) in the presence of the hlgh frequency
component.

From the periodogram analysis of the incom-
plete series {y; } the following is remarked:

1 . The periods Pc are again equal to the cor-
responding exact values (op = 0), except for the ex-
treme case when P = 100 and N = 900. In this case

AP = P - Pc fluctuates between +2 units: standard
deviation o4 = 0.5. So, the first conclusion from the

precedent paragraph is practically confirmed.
2 . For the amplitude bias AA = A — Ac the

next reeults are obtained:

AA: 02 02 04 05 09 0.9
B: 10 20 100 200 300 400

- The tendency of AA increasing in function of the

total amplitude A; = A + B now seems real, but
having also in mind the results from the Table 1 we

do not assume that.
3 . The aliasing evidently enlarges the random

fluctuations of Ac (Table 4) and Fig. 2. In fact, stan-
dard deviation o4 increases with the total amphtude .

A: = B + 100 (in precedent paragraph Ay = A), so
the ratio ¢ = 04/A; remaines practically constant.

This later follows from the results in the Table 5,

where we can see that the standard deviation of the
variable ¢ 1s very small.

P Beside that, o4, as previously, is independent
on
4 . The random fluctuations of the phase de-

pend neither on P nor on B. In general, it can be
noted that if A > 10, then op; depends only on N.

_ T.o illustrate that opp in the Table 6 .is presented

in function of N and B, while in the Table 71t 1s
presented as function of N and P.

5 . The phase bias 1s not 1dentified.
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[ Table 4

. Standard deviation 04 in function of N and B:
~ mean values for the given set of P

200 300 400

10 - -850 100

0.8 1.1 1.5 2.2 2.8 3.6

200 1.3 1.7 2.5 3.7 4.8 5.8

300 1.6 2.2 2.8 43 6.0 6.7

400 1.9 2.7 33 - 53 7.0 8.5

500 2.5 3.5 4.6 7.2 9.1 11.2

600 2.8 3.8 5.2 7.7 10.4 13.8

700 3.7 5.3 6.6 10.9 14.1 17.0

800 5.0 6.7 9.0 13.5 18.8 22.6
. 900 7.2 10.3 13.1 20.3 26.6 33.6

+ B=400

. - | N
@ . 400 B0 1200 o 400 500 1200
50— Th o ! 403 On
* B=60 , 20

N 53 : N

1200 B . 400 =%, 1200
40 - Oa .
« B=10 _ =
' - 50 ;' B=20¢
N ' ,_/ N
%, T TTTT T
_ 300 1200

800 - 1200 o 400 800

Fig. 2. Sfagdard deviation of the amplitude (04) as functions of N in the presence of the aliasing term.
whose amplitude is B.

21



Q. 100

Q.50

.00

Fig. 3. The ratio g = 04 /A, as function of N. '
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“Table 5

Mean values of the ¢ = 64/A¢ (in 0.001 units) 'for the set of

10

0.6
1.0
1.0

1.3

1.3
2.2

29

3.3

300
400
500

600

700

1200

o0

0°5

0.6
1.0
1.0

1.3

1.3
2.1

B

3.3

800
900

0°4

0.6
1.0
1.0
1.3
1.3

2.2
25

3.3

- A, = 10,100,110, 150, 200,300, 400,500.
 o,-standard deviation of ¢ in the same units.
100
200

9 9
([ 0.2
12 0.2
14 0.3
17 0.3
23 0.3
26 0.5
35 0.4
45 0.7
6 . Parabolic approximations of o4 and opp In
function of N give a satisfactory results (full lines on
Figs 1 and 2).
- As a general conclusion, it follows from our
work the ratio ¢ = o4 /A: varies only in function of
N. The consequence of that the phase errors also
depend only on N. The second order polynomial
approximation of ¢ could be sufficiently good (Fig.
3.

The volume of our computations,devoted to
the problem of the errors of P, A and Ph, computed
by the DFT formula from the series with unequally
spaced data, is not sufficient to obtain the more gen-
eral conclusions, but we assume the estimations of

Table 6

Standard deviation O pj, for P = 50
"~ in function of N and B.

100

200 300 400
075 075 075
0.6 0.6 0.6
1.0 1.0 1.0
1.0 1.0 1.0
1.3 1.3 1.3
1.2 1.3 1.3
2.2 2.2 2.2
2.5 24 2.4
3.3 3.3 3.3
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-~ Table 7

Standard deviation 0 p; in function
of N and P: mean values for the given set of B

P: 5 10 20
N
100 0°4 0°4 0°4
200 0.6 0.7 0.7
300 0.8 0.7 0.8
400 L1 1.1 1.1
500 14 1.3 1.3
600 1.4 1.3 1.5
700 2.0 1.6 2.1
800 2.4 2.7 2.4
900 36, . 38 40

the errors we delt above could be helpful when one:

treats the unequidistant data series.
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IUCKPETHE $YPVJEOBE TPAHC®OPMALIMIE CEPUJA CA CJIYYAJHO
30CTABJLEHVM TOIAIMA: EKCIIEPUIMEHTATTHI TECTOBU.

I. Byposuh
Hncmumym 3a acmporomujy, Cmydenmcku mpe 16, Beozpad, Jyeocaaeuja

- YIK 520: 51-72;-713
OpeuHanHu HayuHu pao

' HcruTMBaHe Cy rpeuike Tepuole, aMIUIM- - MaplbiBa, HOK je Ipelika aMriuTyae pactyha PyH-
Tyoe 4 (Jase CHHYCHOI CHrHajla paiyHaTe momohy kuuja ox A 1 O6poja MIOCTaBIECHMX MoJaTaka N. 3a
fopMyna 3a IUCKPETHE dypujeose TpaHcfopmauuje mato H, KONMIHMK ¢ = 04 /A (04-CTaHA. neB. A) je
cepyja ca CIydajHO M3OCTABJBCHMM MOJALIMMA.  KOHCTaHTaH. YCTBapH, ¢ = g(N). Iocneanua Tora je
Y cnyyajy ynu@opMHe pacriofierie BepoBaTHohe — 1a CTaHZapiHa gesujauuja Qase (opp) HE 32BUCH OX
M3OCTAaBJREHMX TMOJATaKa, I'pellka nepuome je 3aHe- A. |
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